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Abstract of the Dissertation
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Doctor of Philosophy

in

Chemistry
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2025

2D quantum materials are often distinguished by their unique electronic proper-
ties determined by high-momentum electronic states near the Brillouin zone bound-
ary. However, the dynamics initiated by photoexcitation are usually complex in
these materials and often involve scattering to different locations in the Brillouin
zone and many states that are optically dark. In this context, time- and angle-
resolved photoemission spectroscopy (time-resolved ARPES) based on high har-
monic generation (HHG) can be a powerful technique for studying these complex
dynamics owing to its capability of providing momentum-space information. Pre-
viously, most HHG-based time resolved ARPES systems have suffered from severe
data-rate limitations imposed by space charge issues and low electron collection
efficiency of photoelectrons from low repetition rate HHG sources. These limita-
tions have largely precluded the study of intrinsic dynamics of excited particles in
the perturbative low-fluence regime and restricted the parameter space (e.g. flu-
ence, polarization, probe photon energy) that can be explored to extract meaningful
physics.

To overcome these limitations, we have sucessfully combined a high repetition
rate HHG source tunable over the range of 10 - 40 eV and time-of-flight (ToF) mo-
mentum microscopy to produce a unique instrument that can enable low-fluence
measurements across the full Brillouin zone at a very high data rate. This disserta-
tion demonstrates the feasibility of low-fluence excited-state ARPES experiments
from µm-sized samples with coverage of large parameter space and the required in-
strumentation. Our beamline, consisting of a custom-built Yb:fiber frequency comb
driver laser, a HHG enhancement cavity, subsequent beamline, and ToF-momentum
microscope, has transitioned to the new 61 MHz repetition rate. To enable the
demanding time-resolved micro-ARPES experiments in the perturbative limit, the
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beamline must be optimized in a way that a single isolated harmonic is focused to a
small spot on the sample with sufficient flux and long-term stability. With the tech-
nical upgrades and optimizations, the new system provides a flux of ∼ 1011 photons
per second in a single isolated harmonic to the sample over the broad tuning range
of 10 - 40 eV with a spot size of 24 × 16 µm2, ideal for micro-ARPES.

The optimized system has made it possible for studying a variety of small 2D
materials in a qualitatively new regime. This dissertation focusses on experiments in
graphene. Using ToF-momentum microscopy with high data rate and high dynamic
range, we report momentum-space measurements of optically excited electrons,
and their subsequent relaxation. Specifically, we observe a pronounced non-thermal
distribution of nascent photoexcited electrons with lattice pseudospin polarization
in remarkable agreement with results of simple tight-binding theory. By varying the
excitation fluence, we vary the relative importance of electron-electron vs. electron-
phonon scattering in the relaxation of the initial distribution and study how these
scattering mechanisms play a role on the relaxation.
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Chapter 1

Introduction

1.1 Momentum-space representation
The momentum-space concept is seldomly encountered in quantum chemistry

of isolated atoms and molecules. The electronic properties of these simple matter
can all be described in what is most familiar to us, position space. Take a chemical
reaction as an example, where the motions of electrons and atomic nuclei change
continually to break and to form chemical bonds as the reaction passes through
its transition states. Within the Born-Oppenheimer approximation, we construct a
potential energy surface against nuclear coordinates in this real space to visualize
the reaction progress. We ultimately derive atomic or molecular wavefunctions and
their electronic energy levels in position space to understand the microscopic details
of chemical bondings.

On the other hand, when many atoms or molecules are condensed into crys-
talline solids, the subsequent quantum mechanics naturally changes its basis to so-
called “momentum space”. This is the Fourier conjugate of position space where
electron wavevector k, related to crystal momentum ℏk, specifies the coordinates of
the space. The basic concepts of electron/phonon dispersion, scattering, or diffrac-
tion are all understood in momentum space. We formulate simple electronic prob-
lems within single-particle pictures [2,3] in a momentum-space basis and even more
complex interaction problems for strongly correlated electron systems to study their
electronic structures and new emerging phenomena [4–6].

Thus far, position- vs. momentum space representation may be merely seen as a
mathematical parametrizaton of space and it is not so clear why momentum space is
represented by k rather than the position vector r. The answer to this question lies in
the band theory of solids. In a crystal lattice, the discrete energy levels of constituent
atoms group into bands and a representation of these energy bands in momentum
space is called the band structure of a solid. To calculate the band structure, one
needs to solve the problem of an electron moving in a periodic lattice potential. In
the independent electron approximation, this reduces to a single-particle Hamilto-
nian problem with the Hamiltonian given by Ĥ = −ℏ2/2m∇2 + U(r) where the
one electron potential U(r) = U(r+R) has the periodicity of the underlying lattice
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for all lattice vectors R [2, 3]. One can greatly simplify this problem by making
use of periodic translational symmetry according to Bloch’s theorem. We define a
translation operator T̂R which, when acting on an arbitrary function f(r), shifts the
argument by R, T̂Rf(r) = f(r + R) [2]. When T̂R acts on the crystal Hamilto-
nian Ĥ, it leaves Ĥ unchanged because of the periodicity of Ĥ. T̂R then becomes a
good symmetry operator that commutes with Ĥ, [Ĥ, T̂R] = 0, and Ĥ and T̂R can
be diagonalized simultaneously. Hence, T̂R can be used to identify the eigenstates
Ψ(r) of Ĥ, T̂RΨ(r) = eik·RΨ(r), which is true for the Bloch states. Here the
electron wavevector k, associated with the eigenvalue eik·R of T̂R, becomes a good
quantum number to label the Bloch eigenstates, similar to the atomic case where l
and m are associated with the eigenvalues of commuting operators L̂2 and L̂z spec-
ify the atomic states. The corresponding energy eigenvalues, thus the energy bands,
εn(k) of Ĥ depend only on the electron wavevector k with the band index n. It is
this quantum number k that parametrizes the corresponding vector space as a result
of periodic symmetry of the unit cell.

When discussing the band structures of solids, we often use the Fourier trans-
formed unit cell, called the Brillouin zone, and Γ, K, or M points representing spe-
cific locations within the Brillouin zone. Band structures provide useful properties
of materials. Bandgaps are useful for determining material types such as a metal,
semiconductor, or insulator and optical properties such as absorption or emission.
Band curvatures near the extrema determine carrier mobility through those bands.
All of these are important for applications in optoelectronics and photovoltaics,
where material designs by engineering bandgaps are critical for harvesting light.

1.2 Direct access to momentum space
Understanding the electronic structures of quantum materials is at the heart of

modern condensed-matter physics. In these materials, interactions of electrons with
many interacting degrees of freedom, such as electron interactions among themes-
lves or with spin or phonons, often lead to exotic quantum effects and new quantum
states ranging from unusual topological states protected by time-reversal symmetry
for quantum computing to the Berry phase for spintronic applications to non-local
entanglement of quantum states for teleportation to high-temperature superconduc-
tivity beyond the Bardeen–Cooper–Schrieffer limit [6–8]. The potential impact of
applying these novel quantum effects into next generation technologies has moti-
vated a wide range of scientists to investigate the electronic properties of quantum
materials.

For characterizing ground states of quantum materials, angle-resolved photoe-
mission spectroscopy (ARPES) has become a standard spectroscopic tool for direct
momentum-space measurements [9, 10]. This technique is based on the photoelec-
tric effect, the phenomenon first observed by Hertz [11] in 1887 and the concept
later recognized by Einstein [12] in his 1905 paper. The great utility of ARPES is
the direct provision of energy-momentum dispersion in crystalline solids based on
simple conservation of energy and momentum. The periodic in-plane symmetry of
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the crystal along the surface preserves the parallel components of electron momenta
inside (k∥) and outside (K∥) the material,

k∥ = K∥ =

√
2mT

ℏ
· sinθ = 0.512Å

−1√
T [eV] · sinθ, (1.1)

where θ is the angle of photoelectrons emitted from the sample and T is their kinetic
energy determined from the energy conservation statement T = hν − (Φ + |EB|)
with hν the incident photon energy, Φ the material workfunction, and EB the bind-
ing energy of electronic states inside the material. By measuring the emission an-
gles and kinetic energies of photoelectrons, one can directly extract the energy-
momentum dispersion of electrons in the material. Thus, ARPES has been exten-
sively used for studying the electronic structures of various condensed-matter sys-
tems for many decades, which is why every syncrotron has a beamline dedicated to
ARPES stations for ground-state photoemission measurements.

1.3 Technical challenges in time-resolved ARPES
Conventional ground-state ARPES can be extended into the time domain via

pump-probe spectroscopy using a pair of ultrashort pulses. In time-resolved ARPES,
the first optical pulse, called the pump, excites electrons to unoccupied states and
the second delayed pulse, called the probe, tracks the population of the excited
electrons by photoemission. Subsequent relaxation dynamics of excited quasi-
particles after photoexcitation are usually complex because they often couple to
other interacting degrees of freedom [13] and involve many states that are opti-
cally dark [14–16]. In this regard, time-resolved ARPES provides direct energy
and momentum selective dynamics, inaccessible by any other optical spectroscopy,
with the possibility of disentangling complicated interactions. However, the im-
plementation of time-resolved ARPES presents a number of technical challenges.
For example, time-resolved studies with commonly used 6 eV light sources can
achieve high performance, but are restricted to small momentum electronic states
only around the Brillouin zone center due to the limited photon energy [17–21].

1.3.1 Brillouin zone coverage
Many interesting ultrafast dynamical processes in quantum materials occur at

high momentum electronic states near the edge of the Brillouin zone as well. High-
lighted examples are conical band dispersion in graphene [22, 23], exciton physics
in transition metal dichalcogenides [24–27], and the antinode of copper oxide based
high-temperature superconductors [28,29]. The first Brillouin zone of these systems
typically extends to the range of 0.7 - 2.0 Å−1 [30]. To cover this range of the full
Brillouin zone, the minimum photon energies of ∼ 20 eV are needed.
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There are different methods for accessing the XUV spectral region. Synchrotron
radiation has been the main choice for XUV ground-state ARPES for many decades,
but the long pulses produced by equilibrated recirculating electron bunches are
not not suitable for ultrafast time-resolved measurements. Alternatively, the free-
electron lasers can provide fs-pulses but their low repetition rates are not high
enough to perform time-resolved ARPES experiments [31]. High harmonic genera-
tion (HHG) has often been the best choice until now for generating ultrashort XUV
pulses suitable for time-resolved ARPES. In a typical HHG process, high-energy
ultrashort infrared laser pulses (>100 µJ) are focused onto a noble gas medium to
intensities of ∼ 1014 W/cm2. Harmonics of the fundamental driving laser frequency
at odd integer multiples are created during the frequency upconversion process.
Previously, the repetition rate has been limited to kHz level by available average
power from existing commercial laser systems, posing a data-rate challenge for
performing time-resolved XUV ARPES, especially in the limit of low excitation.

1.3.2 Low-fluence time-resolved ARPES
Excitation fluence has a profound impact on excited-state dynamics. For this

reason, pump-probe experiments on condensed-matter systems are generally di-
vided into two regimes, non-perturbative high-fluence and perturbative low-fluence
experiments [5]. High-fluence experiments are particularly useful for the study of
photo-induced phase transitions such as ultrafast melting of charge order [32, 33],
metal-to-insulator transition [34], or ultrafast demagnetization [35]. They typically
use ∼ mJ/cm2 fluence, where optical excitation produces substantial changes in
the electron band structures. Here, the dynamics are due to a more collective re-
sponse [5] from a large density of excited particles. Under the ∼ mJ/cm2 regime,
the electronic temperature is usually several thousand kelvins, as observed in Mott
insulator [17] or graphene/graphite [36–38], leading to rapid thermalization.

Low-fluence experiements study intrinsic dynamics of individual excited quasi-
particles with ∼ µJ/cm2 fluence [5, 39–42]. In this low-fluence regime, the system
is perturbed as gently as possible [5] such that weak pumping initially creates only
a small number of individual quasiparticles in the conduction bands. In this way,
interactions of excited particles are substantially suppressed such that the dynamics
are more likely due to those moving in the material’s intrinsic bands as opposed to
a large collection of excited particles moving in transiently modified bands in high-
fluence experiments. This perturbative-excitaition regime is important to study ma-
terials with low transition temperatures [17, 18] and to probe the dynamics within
a given phase of a certain material [5]. Also, this is the regime where electron-
phonon scattering is expected to be the dominant scattering mechanism and there-
fore one can effectively study a nonthermal distribution of nascent photoexcited
electrons that have not yet relaxed into a Fermi-Dirac distribution. By gradually
varying the fluence, one can control the relative importance of electron-electron vs.
electron-phonon scatterings and study how electron-phonon coupling plays a role in
the relaxation. The trouble with studying these individal quasiparticle dynamics is
that pump-induced photoemission signals are usually small and nearly indicernible
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from statistical noise in the electron distributions [40], in contrast to the ∼ mJ/cm2

regime where photoexcitation produces large discernible changes visible on a linear
scale. High data acquisition rate is then important for recording such measurements
at high dynamic range.

The most critical factor that limits data rate in time-resolved photoemission ex-
periments is the so-called vacuum space charge effect. In photoemission, interac-
tions between electrons emitted from a sample surface during a short laser period
cause shifting and broading of photoelectron spectra, where the shifting and broad-
ening scale with the number of electrons per probe pulse [43–47]. When ultrashort
pump pulses are added to photoemission techniques, they can intensify this space
charging via multiphoton processes [48–50]. The space charge effect fundamen-
tally limits the number of electrons that can be extracted from a sample, and hence
the number of photons that can be applied to it. For XUV probe pulses, the number
of electrons per pulse should be 100 - 1000 to limit the resolution to 100 meV [51].

Given the attainable data rate set by the fundamental space-charge constraint,
the data-rate problem becomes particularly acute for time-resolved photoemission
measurements in the low fluence limit. The signal of interest in a typical pump-
probe measurement comes from only a small fraction of ground-state electrons ex-
cited by the pump, which is typically orders of magnitude smaller than the signal at
EF . In the low fluence regime of ∼ µJ/cm2, corresponding pump-induced signals
become even smaller, orders of magnitude lower than the ∼mJ/cm2 regime. To ex-
tract the dynamics of excited states, data should be recorded at several pump-probe
delays at a minimum, and often with varying fluence, polarization, and photon en-
ergy to extract meaningful physics. Complete low-fluence time-resolved ARPES
experiments covering all these parameters then demand increasingly long acquisi-
tion time. Therefore, low-fluence experiments have been very difficult, especially
with space-charge limited HHG-based photoemission setups.

Given these limitations, to avoid the detrimental space charge problem and thus
to record data with reasonable acquisition time, it is necessary to perform experi-
ments at high repetition rates. Significant improvements have been made recently
to achieve high repetition rate HHG sources and they have been successfully ap-
plied to time-resolved photoemission measurements [41, 52–54]. High repetition
rate ultrashort XUV pulses can be generated via single-pass HHG with tight fo-
cusing [54–56] or cavity-enhanced techniques [52, 57]. In single-pass HHG, the
required ∼100 µJ pulse energy for a HHG process is delivered by a high power
commercial laser and focused onto a gas medium. In cavity-enhanced HHG, low-
energy ∼1 µJ driving pulses from a femtosecond optical frequency comb are reso-
nantly enhanced in a passive optical resonator to pulse energies > 100 µJ [58, 59].
While cavity-enhanced HHG provides ultrashort XUV pulses at higher repetition
rates, usually up to ∼ 100 MHz [60–62], single-pass HHG outputs XUV pulses
typically at kHz repetition rates, with a few examples of ∼ 1 MHz [54], limited by
available powers from commercial lasers.

Experimentalists can also optimize data rate for low-fluence time-resolved ARPES
by adopting the new technique of time-of-flight momentum microscopy (ToF-MM)
[63, 64] for photoelectron detection. ToF-MM provides simultaneous detection of
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2D momenta (kx, ky) and energies E of photoelectrons emitted from the full 2π
solid angle, dramatically increasing data rate by several orders of magniude higher
than conventional hemispherical analyzers. It can also select photoemission sig-
nals from a micron-sized region of interest on the sample surface via an insertable
aperture in the real-space image plane of the electron microscope, enabling micro-
ARPES from small samples. Over the past few years, several research groups have
benefited from combining ToF-MM and HHG-based time-resolved ARPES system
operating at 500 kHz - 1 MHz and achieved high-performance measurements in
the low-fluence limit or close [16, 54, 65, 66]. However, the data rate with these
repetition rates can still be a problem to scan a range of experimental parameters,
especially the probe photon energy as needed to study the matrix element effect or
samples with strong kz dispersion.

1.4 Low-fluence time-resolved micro-ARPES at Stony
Brook

At Stony Brook, we have sucessfully combined a cavity-enhanced HHG source
with ToF-MM to produce an advanced beamline that can enable low-fluence time-
resolved ARPES at very high data rate. Previously, our group developed an ultra-
short table-top HHG source operating at 88 MHz using a resonant cavity enhance-
ment to solve the data-intensity problem of surface photoemission [52]. Using a
pulse-preserving monochromator [67], the previous system achieved a nearly syn-
chrotron comparable flux of ∼ 1011 photons per second in a single isolated har-
monic to the sample over the broad tuning range of 10 - 40 eV with a spot size of
58 × 100 µm2, but with ∼ 1000 times shorter pulse duration than synchrotron light
sources. We observed laser-induced modifications of the photoelectron spectra on
Au(111) at the 10−4 level in only minutes of integration time using a hemispherical
analyzer, demonstrating the feasibility of low-fluence excited-state XUV ARPES
experiments nearly free of space-charge effects.

This dissertation presents the work after we further extended our HHG source
to the ToF-MM technique at the new 61 MHz repetition rate. It describes high-
performance time-resolved ARPES experiments from µm-sized samples in the per-
turbative excitation regime. To enable such challenging experiments, significant
technical advancements are necessary in every component of the instrument and
this dissertation describes the required instrumentation and upgrades in detail. Our
time-resolved ARPES system consists of a custom-built Yb:fiber frequency comb
driver laser, HHG enhancement cavity, subsequent beamline, and ToF-momentum
microscope as shown in Fig. 1.1. The upgraded system now delivers a high flux
of ∼ 1011 photons per second and a small spot size of 16 × 24 µm2 at the sample,
well optimized for performing micro-ARPES measurements. With the upgraded
system, we can record ground-state photoemission signals covering the full Bril-
louin zone in seconds and low-fluence time-reolved ARPES measurements in just
a few minutes per delay. This high data rate allows us to systematically explore the
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large parameter space such as a wide range of fluence, the probe energy, and pump
polarization, as shown in our recent measurements in Refs. [25] and [68].

Figure 1.1: The Stony Brook time-resolved ARPES beamline. Time-resolved
ARPES experiments are driven by a home-built 80 W, 180 fs Yb:fiber frequency
comb operating at a center wavelength λc =1.03 µm and a repetition rate of 61
MHz. High-order harmonics are generated in a gas jet (GJ) at the focus of a six-
mirror enhancement cavity and outcoupled by a sapphire plate at Brewster’s angle
(BP). A pulse-preserving monochromator, consisting of two toroidal mirrors (TM1
and TM2), a grating, and an exit slit isolates a single harmonic, which is refocused
to a sample by a final toroidal mirror (TM3). A ToF-momentum microscope is used
for the photoelectron analyzer. This image is courtesy of Sergii Chernov.

This dissertation is organized as follows. Chapter 2 introduces the principles of
time-resolved ARPES covering various topics from the basics of ARPES, aspects
of time-resolved ARPES, and cavity-enhanced HHG, all relavent to understand-
ing the subsequent chapters. Chapter 3 discusses the critical details of technical
optimizations and upgrades on the light source and beamline as well as the perfor-
mance. Chapter 4 describes the optimization of ToF-MM necessary for performing
low-fluence measurements. It addresses what challenges arise from operating a
ToF-momentum microscope at a high repetition rate and how the challenges are
mitigated in our setup.

The aforementioned optimizations on the instrument have made it possible to
study excited-state dynamics in µm domain 2D samples in the perturbative low
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fluence regime that previous studies were unable to access. This dissertation partic-
ularly focuses on experiments on graphene. Chapter 5 contains the simulations of
momentum-space photoelectron distributions by simple tight-binding theory. This
chapter also discusses in detail the matrix element effects in photoemission mea-
surements. Chapter 6 presents imaging of initial electron distributions in the non-
thermal regime and the details of the subsequent relaxation across a range of flu-
ence. It discusses how electron-electron and electron-phonon couplings play a role
on the relaxation. Chapter 7 details data analysis of graphene experiments.
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Chapter 2

Time-resolved ARPES

2.1 Principles of ARPES
To understand the time-resolved ARPES technique, the general principles of

ARPES must be understood first. Many papers and books [9, 10, 69, 70] discuss
them in depth. This section follows Refs. [9, 69, 70].

2.1.1 k∥ determination
When monochromatic light with energy hν greater than the material work func-

tion Φ (4 - 5 eV for typical metals) impinges on a crystalline solid, electrons absorb
that energy, overcoming Φ and the binding energy EB, and can emit out in different
directions with kinetic energies,

T = hν − (Φ + |EB|), (2.1)

via the photoelectric effect [11, 12]. The corresponding momenta of these photo-
electrons in vacuum are determined by their emission angles θ and kinetic energies
T as

ℏK = ℏ
(
K∥
K⊥

)
=

√
2mT ·

(
sinθ
cosθ

)
(2.2)

where K are the total wavevectors of the photoelectrons, projected in the planes
parallel (K∥ = Kx +Ky) and perpendicular (K⊥ = Kz) to the surface. To derive
the energy-momentum dispersion, the crystal momenta ℏk and EB of the electrons
inside the solid must be retrieved from the photoelectrons’ vacuum momenta ℏK
and kinetic energies T using proper boundary conditions. However, due to the
broken periodic symmetry of the crystal across the surface (i.e. crystal termination),
only the in-plane momenta are conserved during a photoemission process. For this
reason, the in-plane and out-of-plane momenta, ℏk∥ and ℏk⊥, are treated separately.

The determination of the in-plane crystal wavevectors k∥ can be done based di-
rectly on the detected values of θ and T . Due to the in-plane translational symmetry
of the crystal, the electron’s parallel momenta inside and outside the solid should
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match at the surface boundary if the photon momentum is negligible. It then follows
that

k∥ = K∥ =

√
2mT

ℏ
· sinθ = 0.512Å−1√

T [eV] · sinθ. (2.3)

For ARPES experiments conducted in the photon energy range 20 - 100 eV, the
photon momentum κ = 2π/λ is relatively small compared to the typical size of the
Brillouin zone 2π/a with lattice constant a and can be neglected. In this case, the
photoelectrons’ vacuum momenta K∥ accurately represent the crystal momenta k∥
within the solid and one can construct the energy-momentum dispersion simply by
mappingEB as a function of k∥ based on measured angles and kinetic energies. For
the lower photon energies, their momenta become nontrivial and should be taken
into account when writing the momentum conservation statement in Eq. 2.3.

2.1.2 k⊥ determination
The determination of the orthogonal crystal wavector k⊥ becomes important

for the complete 3D band mapping of a sample exhibiting substantial k⊥ disper-
sion. However, k⊥ cannot be directly determined from the measurement of K⊥
(photoelectron’s orthogonal wavevector) due to the broken periodicity of the crys-
tal across the surface. To relate K⊥ and k⊥, one must know the final states to which
the electrons are photoexcited to inside the solid. Doing so requires the detailed un-
derstanding of a photoemission process, which has often been discussed within the
context of the Three-Step model [71, 72]. The Three-Step model describes photoe-
mission in terms of three successive steps - optical excitation of an electron in the
bulk, its propagation to the surface, and its transmission into vacuum (more details
follow in Section 2.1.3).

Most often, a nearly free-electron model is used for the final states. This model
assumes that after absorbing photons with energy hν in step one, electrons are
vertically transitioned to free-electron type final-states with energy,

ϵf (k) =
(ℏk)2

2m
− |V0| =

ℏ2
(
k2
∥ + k2

⊥

)
2m

− |V0|, (2.4)

where V0 refers to an energy offset to the true free electron energy (ℏk)2/2m. Com-
monly known as the inner potential, V0 is seen as an energy barrier that the electrons
must overcome when passing through the surface in the subsequent steps, leading
to the discontinuity of the out-of-plane momenta. For those final-state electrons that
made it out to the surface without scatterings, their orthogonal crystal wavevectors
k⊥ can be recovered based on the energy conservation before and after exiting the
sample,

ℏ2/2m(k2
⊥)− V0 = ℏ2/2m(K2

⊥). (2.5)
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Using the definition of K⊥ in Eq. 2.2, k⊥ takes the form,

k⊥ =
√

2m(T cos2θ + V0). (2.6)

The most common way of determining V0 is from hν-dependent ARPES measre-
ments where the photon energy hν is varied to obtain the periodicity of the k⊥
dispersion [73, 74].

2.1.3 The Three-Step model and photoemission cross section
To completely derive the band structure of a solid, one needs to understand

photocurrents (photoemission intensities) of energy bands produced in ARPES.
The calculation of ARPES photocurrents is usually far more complex as it involves
proper treatments for surface/bulk/vacuum effects and interactions. In this regard,
the Three-Step model [71, 72] provides a simple description of a photoemission
process by breaking it up into three independent steps. Hence, the formulation of
ARPES photocurrents is most often discussed within this model.

Step 1. Optical excitation of an electron in the solid.

Step 1 is important as it contains all the characteristics of original electronic
states necessary for the reconstruction of energy-momentum dispersion. The pho-
tocurrent is produced as a result of optical excitation from the N -electron ground
state ΨN

i to the N -electron final state ΨN
f by the photon field with energy hν. If

the photon field is treated as a small perturbation Hint to the system, the transition
probability wfi for the optical excitation can be approximated by Fermi’s Golden
Rule:

wfi =
2π

ℏ

∣∣∣∣ ⟨ΨN
f |Hint |ΨN

i ⟩
∣∣∣∣2δ(EN

f − EN
i − hν). (2.7)

where EN
i and EN

f denote the initial- and final-state energies, respectively. The
delta function is to ensure energy conservation in this step. Eq. 2.7 can be a sin-
gle step theory if the true final state, i.e. a reversed LEED (Low-Energy Electron
Diffraction) state, is provided. The interaction HamiltonianHint takes the following
form,

Hint =
1

2m
(p+ eA)2 − eU (2.8)

≈ e

m
p ·A (2.9)

where p is the electron momentum operator and A and U are the vector and scalar
potentials of the photon field. If one chooses the Weyl gauge U = 0, neglects the
term A2 for two photon processes (A2 ≪ A in the linear optical regime), and uses
the dipole approximation ∇ ·A = 0 (A constant over atomic distances, valid in the
ultraviolet), then Eq. 2.8 becomes [p,A] = −iℏ∇·A = 0 and simplifies to Eq. 2.9.
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The dipole approximation does not usually hold for the high photon energy range
(i.e. hard X-ray) where photon wavelengths λ becomes comparable to or smaller
than atomic dimensions a0 (q · r = 2π

λ
a0 ≥ 1 so the higher order terms of the

expansion in A = eq·r become nontrivial).
The transition matrix element ⟨ΨN

f |Hint |ΨN
i ⟩ in Eq. 2.7 is a complicated many-

body problem and certain approximations about the N -electron wavefunctions are
necessary for handling this complexity. In the simplest approximation, one can treat
electron-electron interactions as a mean field as in the Hartree-Fock theory. In this
independent electron approximation, the intial-state (final-state) N -electron wave-
functions may be factorized into a single atomic orbital ϕk

i (ϕk
f ), from (to) which the

electron is photoexcited, and the remaining (N − 1)-electron wavefunctions ΨN−1
i

(ΨN−1
f ):

ΨN
i = Aϕk

i Ψ
N−1
i (2.10)

ΨN
f = Aϕk

fΨ
N−1
f (2.11)

where the antisymmetric operator A is used to satisfy the Pauli exclusion principle.
Note that here ϕk

i and ϕk
f are taken to be the bulk Bloch states, and are indexed with

the same wavevector k due to momentum conservation in this step.
In reality, the N -electron system in the final state will try to readjust itself at the

instant of photoemission so as to minimize the relaxation energy. In this case, the
independent picture no longer holds for the final state, invalidating the factorization
in Eq. 2.11. One then needs to invoke an additional approximation, called the sud-
den approximation for justifying Eq. 2.11. In the limit where photoemission occurs
instantaneously (no time for interaction between the photoelectron and the remain-
ing system), the escaping photoelectron can be regarded independent, decoupled
from the (N − 1)-system left behind. The (N − 1) electron final-state ΨN−1

f can be
collapsed into any one of m possible excited states left behind with eigenfunctions
ΨN−1

m and energy EN−1
m :

ΨN−1
f =

∑
m

amΨ
N−1
m . (2.12)

Equating Eq. 2.10 and 2.12 to 2.7, one can now calculate the total photocurrent
I(k, T ) =

∑
f,iwfi by summing the transition probabilities wfi for all possible

transitions between the initial and m possible final states:

I(k, T ) ∝
∑
f,i

∣∣ ⟨ϕk
f |Hint |ϕk

i ⟩
∣∣2∑

m

∣∣ ⟨ΨN−1
m |ΨN−1

i ⟩
∣∣2δ(T + EN−1

m − EN
i − hν)

(2.13)

Mk
f,i = ⟨ϕk

f |Hint |ϕk
i ⟩ (2.14)

A0(k) =
∑
m

∣∣ ⟨ΨN−1
m |ΨN−1

i ⟩
∣∣2 (2.15)

where the final-state energy EN
f = T +EN−1

m in the δ function is rewritten in terms
of the kinectic energy of the photoelectron T (referenced to the vacuum level) and
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the rest (N − 1) final-state energy EN−1
m . Under the sudden approximation, the

N -body transition matrix element in Eq. 2.7 has been separated into the simpler
one-electron dipole matrix element Mf,i and the spectral function A0(k). These
are two essential factors in determining ARPES spectra and more details will be
discussed below.

Step 2. Propagation to the surface.

Following optical excitation in the bulk in step 1, photoexcited final-state elec-
trons travel towards the surface in step 2 under electron scattering events. The
electron mean free path plays a crucial role in determining the probability of those
photoexcited electrons reaching the surface. Principal scattering mechanisms are
electron-phonon and electron-electron scatterings. The electrons that made it out
to the surface with energy loss become “secondary” photoelectrons, contributing to
a background tail of photoemission spectra at lower kinetic energies. The electron
mean free path typically follows a kinetic energy dependent “universal curve” in
solids [75]. The trend shows a minimum of ≈ 5 Å in the kinetic energy range of
20 - 100 eV, the values expected from typical ARPES experiements. Therefore,
the vast majority of photoexcited electrons, that made it out to the surface with no
energy loss, come from only the top few layers in ARPES, making ARPES a highly
surface sensitive technique particularly for the extreme ultraviolet photon energy
range used.

Step 3. Transmission into vacuum

In the last step the photoexcited final-state electrons overcome a potential barrier
at the surface and transmit into a free-electron plane wave state in vacuum. During
this process the out-of-plane component k⊥ is not conserved due to this potential
step. The total photoemission current is a product of the respective probabilites in
the three steps.

Remarks on the Three-Step model.

Although the Three-Step formalism has been successful in that it gives a simple,
intuitive description of the photoemission process, this oversimplified model has a
drawback (for detailed discussion, see Ref. [69]). The model barely takes surface
effects into account for the photocurrent although it recognizes photoemission as
surface, not just bulk, phenomena. First, the final state is treated as a bulk Bloch
state, completely neglecting the existence of the surface for the matrix element.
Secondly, the model uses the electric dipole approximation ∇ · A = 0 , but this
assumption is generally invalid near the surface, where the gradient of the vector
potential A changes according to a rapid change in the dielectric constant near the
surface-vacuum interface. In some cases, these surface effects are not small and
directly impact the photoemission spectra, known as surface photoemission (see
Ref. [69] for more details).
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Note that a more rigorous approch called the One-Step model [76, 77] also ex-
ists, which combines all these three steps into a single coherent step. In certain
cases, this One-Step model may be more appropriate and can reproduce the data
with a better accuracy. More sophisticated models that take relativistic and many
body effects into account have also been developed over the years (see Ref. [69]
and references therein).

2.1.4 The spectral function
To generalize the photoemission formalism to any kind of systems, even to those

exhibiting substantial many-body phenomena, it is important to consider electron
interactions more formally. In the context of interacting many-body problems, the
most commonly used approach is the Green’s function formalism, where many-
body interactions are properly accounted for by electron self-energy Σ(k, E) in
Green’s functions. In photoemission, the one-electron Green’s function G(k, E)
is a relavent one to use because the equation A(k, E) = −1/πImG(k, E) directly
relates it to the one-electron spectral function A(k, E). For an interacting system,
G(k, E) is given by

G(k, E) =
1

E − ϵk − Σ(k, E)
, (2.16)

and the corresponding spectral function takes the following form,

A(k, E) = − 1

π

Σ
′′
(k, E)

[E − ϵk − Σ′(k, E)]2 + [Σ′′(k, E)]2
. (2.17)

Now many-body interactions are introduced in the so-called self-energy, Σ(k, E) =
Σ′(k, E)+ iΣ

′′
(k, E), as a correction to the unperturbed, single-electron energy ϵk,

called the bare band energies. A(k, E) here is a Lorentzian in E and the spectral
broadening and the renormalized peak position due to the interactions are deter-
mined by the imaginary Σ

′′ and real part Σ′ of the self-energy, respectively.
In the independent electron approximation, Σ(k, E) = 0 and A(k, E) = −1/π

δ(E − ϵk) and A(k, E) consists of a series of sharp lines at the bare band energies
ϵk, that is the single-particle band structure. This approximation is pretty good for
ARPES from graphene with the electronic structure well described by band theory.
In our work, we excite electrons to energy hνpump/2 = +1.2 eV above the Dirac
point by a 2.4 eV pump pulse. Although electron interactions may affect how elec-
trons move in the bands and change the distributions, they are not really expected
to modify the electronic structure of graphene. In this case, ARPES measures elec-
trons moving in the bands described by the single-particle band structure.

In the interacting case, which means ΨN−1
m has other excited-state contributions

in Eq. 2.15, A(k, E) consists of the main line dressed with satellite lines. Then,
A(k, E) encodes not only the single-particle band structure but also the many-body
effects.
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2.1.5 ARPES intensity
It is customary to write ARPES intensity in terms of the one-electron spectral

function A(k, E) in Eq. 2.17 such that many-body interactions are properly ac-
counted for. To carry on, A0(k) =

∑
m

∣∣ ⟨ΨN−1
m |ΨN−1

i ⟩
∣∣2 in Eq. 2.13 needs to be

related to A(k, E). In the language of second quantization, ⟨ΨN−1
m |ΨN−1

i ⟩ is repre-
sented as ⟨ΨN−1

m |c−k |ΨN
i ⟩, where the annihilation operator c−k removes an electron

with momentum k from N -electron initial-state ΨN
i , resulting in (N − 1)-electron

initial-state ΨN−1
i . In this context,A0(k) becomes the single-electron removal spec-

tral function A−(k, E),

A−(k, E) =
∑
m

∣∣ ⟨ΨN−1
m | c−k |ΨN

i ⟩
∣∣2δ(E − EN−1

m + EN
i ), (2.18)

relating to the full spectral function byA−(k, E) = A(k, E)f(E) where the Fermi-
Dirac function f(E) restricts the state occupation up to EF . The standard expres-
sion for ground-state ARPES intensity takes the following form,

I(k, E) ∝
∑
f,i

∣∣Mk
f,i

∣∣2f(E)A(k, E). (2.19)

Thus, ARPES measures the single-particle band structure and the associated many-
body interactions, determined by A(k, E), with its intensity modulated by the ma-
trix element effects. In the independent-electron approximation, the single-particle
spectral function A(k, E) becomes a δ-function at the Hartree-Fock orbital energy
ϵk and Eq. 2.19 becomes

I(k, ε) ∝
∣∣Mk

f,i

∣∣2δ(ε− ϵk)f(E). (2.20)

In this limit, ARPES measures the single-particle bare band dispersion with its
intensity modulated by the matrix element effect.

2.1.6 Matrix element
The photoemission matrix element plays an essential role in determining the

ARPES spectra. However, the accurate formulation of the matrix element is gener-
ally difficult, mainly due to a difficulty in taking surface effects into account, and
thus has been calculated with some levels of approximation as in the Three-Step
model. Within the Three-Step model under the independent electron approxima-
tion, the matrix element has been introduced earlier as a one electron dipole matrix
element, Mk

f,i ∝ ⟨ϕk
f |A ·p |ϕk

i ⟩ with A the vector potential of an incoming photon
field and p the electron translation momentum. In the electric dipole approxima-
tion, A(r) = A0e

iq·r = A0(1 + iq · r + ...) ≈ |A0|λ̂ where λ̂ is the unit vector
along the direction of the light polarization and q = (ω/c)n̂ is the wavevector of
the light with ω the angular frequency, c the speed of light, and n̂ the unit vector
along the light propagation direction.

Mk
f,i ∝ ⟨eik·r| λ̂ · p |ϕk

i ⟩ (2.21)
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This simple approximation actually turns out to be a fair estimate for the matrix
element and can be used to interpret ARPES data.

In the simplest case, one can take a free-electron final state with a single plane
wave only. The one electron dipole matrix element Mk

f,i is then written as

Mk
f,i ∝ (λ̂ · k)⟨eik·r|ϕk

i ⟩. (2.22)

Eq. 2.22 highlights three key factors for intensity modulation. First, the λ̂ · k term
in Mk

f,i selects the directions of outgoing photoelectrons momenta k by project-
ing k to the light polarization direction. Second, photon energy (hν) also affects
photoemission intensity through a relation ℏ2|k|2/2me = hν − (Φ + |EB|), where
k = k∥ + kz and hν − (Φ + |EB|) = T , photoelectron’s kinetic energies in Eq.
2.1. Lastly, the details of intensity modulation also depends on the initial and final
states. For example, in graphene one can take a tight binding, Bloch wavefunction
for the initial state (see Chapter 5 for more details). In this case, the overlap integral
⟨eik·r|ϕk

i ⟩, more precisely the relative phase between two sublattice wavefunctions,
leads to interesting interference patterns near the Brillouin zone corners [78]. As a
result, signals from some bands are relatively weaker than those from others, and
in some cases, they can entirely vanish depending on the polarization and energy of
an incident photon field, known as dark corridors [79–82].

While the matrix element helps understand the ARPES spectra, it can also com-
plicate the data analysis in some cases. The reason is that where the matrix element
vanishes can coincide with the region of interest where the physics is being studied,
obscuring the interpretation of results (see Ref. [68] and Chapter 5). Thus, under-
standing the matrix element is crucial for discerning the matrix element effects from
the actual observables.

2.2 General aspects of time-resolved ARPES
Time-resolved ARPES is conducted in a pump-probe scheme where pump pulses

excite electrons to unoccupied states and delayed probe pulses track the population
of the excited electrons by photoemission. However, adding the ultrashort pump
pulse to conventional ARPES typically presents more challenges to the instrumen-
tation of time-resolved ARPES. One must understand not just existing fundamental
problems in ARPES, such as space charge, but also many other technical consider-
ations related to light sources (e.g. polarization, photon energy, tunability in both
pump and probe pulse, repetition rate, spot size), the system’s resolution (e.g. mo-
mentum, energy, time), and electron detection schemes. Since many of these factors
are related to each other, it is difficult to design a perfect time-resolved ARPES sys-
tem that meets all these aspects without certain trade-offs. Thus, the system is usu-
ally optimized for one’s specific goal with inevitable trade-offs. More technical de-
tails on the time-resolved ARPES instrumentation can be found in Ref. [70,83,84].
This section discusses key factors relevant to general time-resolved ARPES exper-
iments.

16



2.2.1 Space charge effect
One of the most fundamental problems in photoemission measurements is the

so-called space charge effect. When electrons are emitted from a sample during a
short laser period, their mutual Coulomb interactions change each other’s trajec-
tories, leading to the redistribution of the electrons in momentum and energy on
their way to a detector. This causes broadening and shift of photoelectron spectra,
degrading data quality.

Numerous studies [43,44,46,47,85–87] have extensively investigated the space
charge effect over a range of kinetic energies and pulse durations. Both shifts and
broadening of photoemission spectra are observed to scale with electron density
ρ ≡ N/D, where N and D are the number of electrons generated per pulse and the
lateral spot size on the sample, respectively. In terms of the sample current Is and
the laser repetition rate fr, this becomes

∆Eb (sh) ∝
(
N

D

)x

∝
(

Is
frD

)x

(2.23)

where ∆Eb (sh) is the energy broadening (b) and shifts (sh) of the photoelectron
spectrum. Here, x is an empirical paramter related to kinetic energies and pulse
durations. For fs-XUV pulses, both theory and experiment have confirmed x ≈ 1
while x ≈ 0.5 for ps- or fs-UV pulses [43–47].

Based on the expression in Eq. 2.23, the space charge limits the number of elec-
trons that can be extracted from a sample and thus the number of photons that can be
applied to it. Maklar et al. have determined that the number of electrons per pulse
should be within 100 - 1000 to limit the resolution to 100 meV for XUV probe
pulses, depending on the type of photoelectron analyzer [51]. Their study shows
that photoelectron spectra measured with momentum microscopes can experience
space charge distortions at much lower photocurrents than conventional hemispher-
ical analyzers. Hellmann et al. have shown in their simulations that to limit the
broadening to less than 5 meV, N/D must be less than 3 µm−1 [47]. Spreading
the electrons more through space by increasing the spot size D is then a good way
of lessening the space charge effect. However, for probing µm-domain samples,
as occurring in single crystals or 2D materials prepared by exfoliation, small spot
sizes are certainly needed and increasing the spot size may not be desired. A more
effective way of mitigating the space charge problem is by increasing repetition
rate. However, the repetition rate is usually compromised by other factors such as
excited-state decay or detector limitations depending on the analyzer type used [51].
The measurements of space charge characterization and detector limitation using
our momentum microscope can be found in Chapter 4.

For time-resolved ARPES, the use of ultrashort pump pulses can intensify the
space charge problem via multi-photon photoionization processes [48–50]. The
complexity in this case arises from the fact that the space-charge interaction be-
tween pump- and probe-induced electrons changes with pump-probe delay, leading
to a delay-dependent spectral shift, difficult to separate from the dynamics of inter-
est [48–50]. One must also keep in mind that there is another complexity, called
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surface photovoltage, arising from the pump pulses especially in semiconductors.
Surface photovoltage refers to illumination-induced changes in the surface poten-
tial (or voltage) [88–90] and this shifts photoelectron spectra as a function of pump-
probe delay [91–95]. In both cases, the shift depends strongly on laser intensity and
thus it is important to keep excitation fluence low enough to minimize the effect.

2.2.2 System’s resolution
One of the important technical aspects to be considered for the instrumentation

of time-resolved ARPES is the system’s resolution. From Eq. 2.3, the momentum
resolution of the system, neglecting its finite energy resolution, can be expressed as

∆k∥ =
√
2mEk/ℏ2 · cos(θ) ·∆θ (2.24)

where ∆θ is the angular resolution of a system. It is obvious from this equation
that lower photon energy hν and larger emission angle θ improve the momentum
resolution in general. For this first reason, high-resolution ARPES experiments are
often performed using lower energy UV light, for example, to study topological
insulators and superconductors. In practice, the momentum resolution of an actual
measurement is compromised by sample quality and energy resolution.

The energy resolution of ARPES measurements depends on the energy band-
width δEhν of a probe light and the detector resolution δED,

δE =
√
(δEhν)2 + (δED)2. (2.25)

Here, the probe’s energy bandwidth is fundamentally limited by its time bandwidth
δt via the following Fourier uncertainty relation,

δEhν(eV) · δt(fs) ≥ ℏ4 ln 2 = 1.825 eV · fs (2.26)

where δt and δEhν are measured at FWHM assuming a Gaussian pulse. Because of
this Fourier transform limit, the energy resolution is usually compromised with the
time resolution determined by a pump-probe cross relation. The resolution can be
further degraded by the space charge effect, as mentioned in the previous section,
sample quality, type of photoelectron analyzers [51], or electronic noise/time jitter
of the instrument.

2.2.3 Light sources for time-resolved ARPES
The advancement of light sources for time-resolved ARPES has been primar-

ily driven by two motivations, the desire to cover the full Brillouin zone of most
condensed-matter systems and the desire to mitigate the space charge effect. Most
conventional table-top laser systems for time-resolved ARPES have employed low
energy 6 eV probe sources, generated via frequency up-conversion in nonlinear
crystals [96–102]. The 6-eV sources are, in general, capable of achieving high
resolution as discussed in section 2.2.2, but they have a limited Brillouin zone cov-
erage. According to Eq. 2.3, the maximum parallel momenta of photoelectrons
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are k∥,max = 0.512Å
−1

sin(60◦)
√

(hν − Φ− |EB|)[eV] assuming θ = 60◦ is within
the acceptance angle of the analyzer. The 6-eV probe light yields the maximum
accessible momenta kmax

∥ = 0.54 Å
−1

for an electron at the Fermi level (EB = EF

), assuming the work function Φ = 4.5 eV. It is clear that traditional 6-eV sources
probe the electron states near the Γ point located at the the center of the Brillouin
zone. In order to cover the full Brillouin zone of most solids, which may extend up
to 2.0 Å

−1
[30], it is necessary to employ a higher energy probe light, at minimum

in the XUV range.
There are different methods for accessing the extreme ultraviolet spectral re-

gion. Synchrotron radiation has been the main choice for XUV ground-state ARPES
for many decades. It offers a bright source with tunable parameters, i.e. wavelength,
polarization, spot size, which are particularly useful for nano/spin-ARPES. High
harmonic generation (HHG) has often been the best choice until now for generating
table-top XUV pulses suitable for time-resolved ARPES. However, most HHG-
based ARPESsystems have long suffered from severe data-rate restriction imposed
by the space charge effect from low repetition rates as discussed in Section 2.2.1.
Scientisits have achieved large gains in developing high repetition rate XUV sources
suitable for time-resolved photoemission measurements. High repetition rate ultra-
short XUV pulses can be generated via single-pass HHG with high-power lasers
and tight focusing [54–56] or cavity-enhanced techniques [52, 57]. In this thesis,
cavity-enhanced HHG is used for generating high repetition rate XUV pulses and
the details of the technique will be discussed below.

2.3 Cavity-enhanced high harmonic generation

2.3.1 Principles of enhancement cavity
As shown in Fig. 2.1, the typical design of an enhancement cavity is a bow-tie

configuration, where the optical path length L is folded with an input coupler (M1)
and m high reflectors (HRs). The bow-tie design is useful for generating error
signals for feedback loops controlling the cavity length (or laser repetition rate) and
laser offset frequency. To understand how input light excites the resonance modes
of an enhancement cavity, one can simplify this geometry to a basic Fabry-Perot
cavity formed of two lossless mirrors by grouping the HRs into one effective HR,
denoted as Mm. One can then think of its field reflection coefficient rm as the
effective field reflectivity from the HRs [103].
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Figure 2.1: Principles of an optical resonator. A typical bow-tie enhancement
cavity shown in a) can be simplified to a basic Fabry-Perot interferometer consisting
of two mirrors as shown in b), 1 input coupler (M1) and a group ofm high reflectors
(HR1 - HRm), denoted as Mm. Cavity transmission is shown in c).

An incident wave with the field amplitude E0 transmitts through M1 that has
the field reflection coefficient r1 and the field transmission coefficient t1. During
the first round-trip, the transmitted wave with the field amplitude E+

0 = tE0 travels
to the right of M1, reflected from Mm, and reflected back from M1 with the field
amplitude E+

1 = E+
0 r1rme

−iϕ. Note that the field amplitude of the reflected wave
back from M1 after each round-trip pass is attenuated by a factor of r1rme−iϕ where
ϕ is the total round-trip phase shift accumulated by an intracavity pulse. After
the nth pass, the total amplitude of the circulating field, Ec, is a sum of all these
reflected contributions up to E+

n :

Ec =
n∑

k=0

E+
n = E+

0

n∑
k=0

(r1rme
−iϕ)n =

E+
0

1− r1rme−iϕ
(2.27)

where the convergent geometric series is used in the last step. The absolute square
of Ec gives the intensity of the internal field:

Ic(ϕ) =
Ic,max

1 + (2F
π
)2 sin2(ϕ/2)

(2.28)

where Ic,max = I0B is the maximum circulating intensity and F is the cavity fi-
nesse, defined as

F = π

√
r1rm

(1− r1rm)
. (2.29)

The cavity finesse is determined by the cavity losses.
The resonances of the cavity occur when the total round-trip phase accumulated

by a circulating light is some integer (q) multiple of 2π, i.e. ϕq = q · 2π. In the
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abscence of the mirror spectral phase (see section 2.4.1), the resonance condition
locates a longitudinal cavity mode at every 2π, where the maximum intensity peak
Ic,max repeats with a period of 2π. The allowed standing wave modes are then given
by the familiar Fabry-Perot formula seen from most optics textbooks:

λq =
L

q
, vq =

c

L
q, ωq =

2πc

L
q (2.30)

The spacing between two adjacent resonance modes is called the free spectral range
(FSR),

FSRv =
c

L
, FSRδω =

2πc

L
. (2.31)

From Eq. 2.30, one can see that the light can only pass through the cavity if the
cavity length is an integer number of the wavelength of the laser light. In terms
of frequency, the laser frequency must be an integer multiple of the cavity FSR to
resonate the light inside the cavity. Thus, the cavity acts as a frequency discriminat-
ing filter with its resonance evenly separated by the FSR for the linear cavity. Note
that in practice, cavity mirror dispersion causes the resonance positions not quite
integer multiple of 2π, but rather adds a small frequency-dependent shift to them
(more details are found in section 2.4.1).

The standard expression of circulating field intensity is given by

Ic(ω) =
Ic,max

1 + (2F
π
)2 sin2(πω/FSRδω)

(2.32)

in terms of measurable quantities FSRδω and F . The width of a resonance peak
can be characterized by finding a frequency ω1/2 at which Ic falls to Ic,max/2. This
gives (2F/π)2 sin2(πω1/2/FSRδω) =1. The small angle approximation sin(θ) ≈ θ
gives the expression ω1/2 = FSRδω/2F . The full width at half-maximum of a cavity
linewidth is just a ratio of FSRδω to F :

∆ωfwhm =
FSRδω

F
. (2.33)

2.4 Basics of cavity-comb coupling
The teeth vm of an optical frequency comb with repetition rate fr and carrier-

envelope offset frequency f (comb)
0 are rigorously given by

v(comb)
m = m× fr + f

(comb)
0 (2.34)

where m is some integer [104]. In the abscence of mirror dispersion (see next
section), the resonance modes of an optical cavity are uniformly spaced by the
FSR. The nth cavity resonance mode can then be described by a simple formula,

v(cav)
n ≈ n× FSR + f

(cav)
0 (2.35)

21



where f (cav)
0 is an offset frequency between 0 and FSR. Despite the resemblance

of two formulas, the cavity f (cav)
0 is not necessarily the same as the comb f (comb)

0

because of the dispersion effects from cavity mirror coatings and the Gouy phase
at the cavity focus (see next section). Therefore, by matching the comb repetition
rate to the cavity FSR and the comb offset f (comb)

0 to the cavity offset f (cav)
0 , one can

simutaneously bring many comb teeth onto resonance, as shown in Fig. 2.2b.
The equivalent time-domain picture for cavity-comb coupling is shown in Fig.

2.2a. The resonace condition is achieved when input pulses from the frequency
comb constructively interfere with circulating intracavity pulses. The coupling
scheme is described in detail in Chapter 3.3.2.

Figure 2.2: Cavity-comb coupling in both the time and frequency domains.
a) In the time-domain picture, input pulses from a frequency comb are construc-
tively interfered with circulating intracavity pulses. b) In the equivalent frequency-
domain picture, a large number of frequency comb teeth are simultaneously reso-
nantly enhanced in a large number of cavity modes.

For coupling a frequency comb to an optical cavity, it is more practical to de-
scribe an optical frequency comb based on a fixed point analysis [105–108], writing
the comb’s optical frequency as

v(comb)
m = (m−m∗)× fr + vm∗ , (2.36)

where m∗ is an integer indicating a fixed point of the frequency comb that remains
stationary to a particular external perturbation. In the fixed point analysis, the comb
modes are considered to expand or contract around this fixed point via changes in
fr. Since a frequency comb has two degrees of freedom, the comb stabilization is
typically done via two active feedback loops with two or more actuators. In our
laser,
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2.4.1 Dispersion effects on cavity-comb coupling.
It has been shown in Section 2.3.1 that the resonance of an optical cavity occurs

when the total round-trip phase ϕ accumulated by a light wave is an integer mul-
tiple of 2π, ϕ = 2πq with q an integer. The total round-trip phase shift has three
components. First and largest is plane-wave-like propagation the vacuum between
the mirrors

ϕprop(ω) =
2π

λ
Lrt =

ω

c
Lrt (2.37)

where c is the speed of light, ω is the angular frequency, and Lrt the round trip
distance between the mirrors. Second is the round trip Gouy phase, θGouy, which
captures an extra phase shift on the circulating light due to the fact that a focused
Gaussian beam is not a plane wave. θGouy is frequency independent and in the con-
text of cavity-comb coupling, it amount to a pure carrier-envelope offset frequency
shift of the circulating intracaviy pulse [109].

The third contribution is the reflection spectral phase of the mirrors. If the
mirrors have a combined complex amplitude reflection rmirror ≡ |r|eiϕ(ω), with all
three contributions, the cavity resonance condition becomes

ω

c
Lrt + θGouy + ϕ(ω) = 2πn . (2.38)

Note that in the absence of the mirror spectral phase, the frequency spacing between
adjacent cavity resonances is given by the condition (ωn+1/c)Lrt−(ωn/c)Lrt = 2π
which reduces to the familiar expression for the free spectral range (FSR) of an
optical resonator ∆ν = c/Lrt, and this is independent of frequency. In general,
the mirror phase ϕ(ω) makes the cavity FSR depend on frequency and this sets the
principal limitation on the frequency comb bandwidth that can be simultaneously
resonantly enhanced in the cavity [61]. The spectral phase is usually expanded
about a central frequency

ϕ(ω) = ϕ0 + ϕ1(ω − ω0) +
1

2
ϕ2(ω − ω0)

2 + . . . (2.39)

where ϕ0 is the phase shift that would be accumulated by a monochromatic wave at
frequency ω0, ϕ1 is the group delay of a pulse, and ϕ2 is the group-delay dispersion
(GDD). In the time-domain picture, the first two terms do not affect the pulse shape
but the higher-order terms do. In the frequency-domain picture, it is the GDD and
higher order terms that make the cavity FSR frequency dependent.

The GDD distorts the shape of a cavity pulse, both the envelope and the carrier.
Consequently the cavity modes are not perfectly spaced by the FSR, rather the FSR
changes with the frequencies, leading to comb-cavity mode mismatches. This effect
can not be completely compensated by adjusting fr and f comb

0 of a frequency comb,
and thus limits the amount of the comb bandwidth coupling into an enhancement
cavity. This spectral filtering lowers the peak power circulating inside an enhance-
ment cavity because the pulse is longer and comb-cavity mode walk-offs result in a
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lower average power. This means that the mirror GDD constrains the design of an
femptosecond enhancement-cavity. To maintain high peak power, a lower finesse
cavity is often desired since it reduces the spectral filtering as seen from the relation,
δω = FSRω

F . For the higher enhancement factor, an over-coupled cavity may be more
preferrable over an impedence matched cavity since the buildup of an over-coupled
cavity is twice more than that of an impedence matched cavity, ≈ F/π.

2.5 High harmonic generation
It generally becomes harder to build lasers below the ultraviolet region because

of pump power scaling as λ−4 [110]. In a traditional optical pumping scheme, the
spontaneous emission rate must exceed the absorption rate to produce a population
inversion. The pump power to attain a substantial gain from the population inver-
sion scales with λ−4. This means that lasing at visible 500 nm implies 16 times
higher pump power than at the IR 1000 nm. To produce the XUV 10 - 100 nm
radiation, the pump power has to increase by at least 4 - 8 orders of magnitude
higher than that to generate the IR. For these reasons, commercial ultrafast lasers
are widely available in the IR but not many below the UV.

An alternative way of generating the XUV light is to convert the commonly
available IR or visible light using nonlinear frequency up-conversion processes.
Conventional nonlinear optics is based on perturbation theory where light-matter
interaction is treated as a small perturbation to a system. In this case, the atomic
polarization density P in a dielectric medium induced by the applied field E can be
expanded by the Taylor series around zero E as

P = χ(1)E + χ(2)E2 + χ(3)E3 + ... (2.40)

where χ(k) is the kth order susceptibilities [111]. The most familiar nonlinear phe-
nomena seen in ultrafast optics are the second or third harmonic generation where
focusing an IR or NIR light onto nonlinear crystals produces a new frequency at two
or three times the driving laser frequency [112–114]. The harmonic yield generally
decreases following a power law with increasing harmonic order in this perturbative
limit.

In order to extend radiation to the XUV range, the field amplitude should in-
crease sufficiently high so that many more higher order terms in Eq. 2.40 become
important. However, as the increased field strength becomes comparable to the
atomic field that binds electrons to the nucleus of an atom, light-matter interaction
is no longer perturbation to a system and the expansion in Eq. 2.40 fails to con-
verge [111], calling for a different model to understand the strong field nonlinear
optics.

High harmonic generation (HHG) was first observed in the late 1980’s by McPher-
son et al. [115] and Ferray et al. [116]. When an intense laser was focused onto a
noble gas target, the harmonic spectra exhibited a plateau of constant intensities ex-
tended into many harmonic orders, instead of the usual exponential fall-off expected
from the perturbative nonlinear optics, and then an abrupt cutoff. The experiments
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of Ferray are much more clearly HHG, showing a much clear plateau/cutoff be-
haviour due to driving with an infrared laser. The basic phenomena of HHG are
now described by the three step model, first proposed by by Kulander et.al [117]
and Corkum [118] and later well understood by Lewenstein [119].

Figure 2.3: Three step model of high-harmonic generation. The electron bound
to its atomic core is tunnel-ionized near the peak of an electric field, gains kinetic
energy from motion in the field, and recombines with the parent atom, emitting a
high energy photon in the XUV region.

The first step of the thee tree step model is the ionization of an target atom.
When a single atom is subject to an intense oscillating electric field, the driving
field bends an atomic potential well, leading to the tunneling of an electron through
the barrier. The ionization process is characterized by the Keldysh parameter,

γ =

√
Ip
2Up

(2.41)

where Ip is the ionization potential of an atom and Up is the ponderomotive energy,
the time averaged kinentic energy of an electron in the oscillating laser field. The
ponderomotive energy is given by

Up =
e2E2

4meω2
(2.42)

Up[eV] = 9.33× 10−14I[ W/cm2]λ2[ µm2] (2.43)

where ω, λ, E, I are the frequency, wavelength, and amplitude, and intensity of the
driving field, and e and m are the electron charge and mass. In Eq. 2.43, all the
natural constants are absorbed in the numeric factor [120].

For γ ≫ 1 ( i.e. Up ≪ Ip), the ionization process is described by multiphoton
absorption. The applied field is still too weak to distort the atomic potential for
the electron tunnelling. The laser field instead imparts the energy of N · ℏω to the
electron in the ground state, supplying enough energy to liberate it to the continuum,
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Ip ≤ N · ℏω. In the limit γ ≤ 1, the so-called strong field regime, the electron
tunnelling occurs near the field maximum.

In the second step of the three step model, the freed electron born near the
maximum of the driving field gains kinetic energy by acceleration of the field and
starts to move in the field away from the parent ion. The motion of the electron is
well described by classic Newton’s law.

The third step is recombination of the electron. As the field reverses in the next
half cycle, it accelerates back to the initial position at the parent ion site. The cut-off
energy, maximum photon energy released upon the recombination, is

ℏωmax = Ip + 3.17Up. (2.44)

It is determined by the ionization potential of a gas medium and the wavelength and
intensity of the driving field. The corresponding harmonic spectrum is a rapid fall-
off for the low-order harmonics, expected from the perturbation theory, followed
by a plateau where the harmonic intensity drops more slowly, and then an abrupt
cutoff. Only odd harmonics are present due to the inversion symmetry of atomic
gases [121].
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Chapter 3

Stony Brook Light Source (SBLS)
and Beamline

3.1 Overview

Figure 3.1: Stony Brook Light Source and beamline. TM: toroidal mirror, BP:
Brewster plate GJ: gas jet, VPD: vacuum photodiode, PD, IC: input coupler.

The layout of the Stony Brook Light Source (SBLS) and beamline is shown in
Fig. 3.1. The light source is divided into a Ytterbium (Yb):fiber frequency comb
driver laser and cavity-enhanced HHG source. The SBLS driver laser is a home-
built 80 W, 180 fs Yb:fiber frequency comb operating at a center wavelength λc
=1.03 µm and a repetition rate of 61 MHz. Fig. 3.2 illustrates the main components
of the SBLS driver laser. More details of the laser system can be found in Ref. [122].
The front-end laser system is built with two components−a Yb:fiber mode-locked
oscillator producing a 1.03-µm seed light at 61MHz and a polarization-maintaining
(PM) Yb-doped fiber pre-amplifier (YDFA). This two component system supplies
a sufficient amount of steady seed power to the subsequent amplifier system.

The comb is amplified to 80 W average power and 180 fs pulse duration using

27



linear chirp pulse amplification in a two-stage power amplifier. First, the 1.03-
µm seed pulse from the YDFA is broadened to several hundred picoseconds in a
custom-made fiber stretcher to avoid intensity-dependent nonlinear effects in the
subsequent amplifier chain. Our fiber pulse stretcher consists of a 31.9 m single
mode fiber with normal second- and third-order dispersion (ϕ2 < 0, ϕ3 < 0) and
a 11.8 m anomalous third-order dispersion cladding fiber (ϕ2 < 0, ϕ3 > 0). These
modules are carefully length-controlled to match the higher-order dispersion of our
compressors. Next, the stretched, 1.03-µm seed pulses are amplified in a 2.5-m long
Yb-doped photonic crystal fiber (PCF) with a 31 µm mode field diameter (MFD)
using a 30 W, 915 nm pump diode laser. The 6.5 W signal then seeds the rod ampli-
fier (a 0.8 m Yb-doped rod-type PCF with a 65 µm MFD), which is pumped with a
200 W, 975 nm pump diode. Lastly, the amplified, chirped pulses are compressed
to 180 femtoseconds in a transmission grating compressor.

Figure 3.2: Overview of SBLS laser system.

Our HHG source and beamline has been described previously in Ref. [52]. The
amplified 80 W, 1.03-µm frequency comb laser with a repetition rate of 61 MHz
is passively amplified in a six mirror enhancement cavity with a 1 % transmission
input coupler and a finesse F > 500, providing up to ∼ 10 kW circulating aver-
age power. High-order XUV harmonics of the amplified IR frequency comb are
generated in a gas jet at a cavity focus and reflected from a super-polished sapphire
wafer at Brewster’s angle for the resonant 1.03 µm light. The outcoupled harmonics
are separated in a home-built pulse-preserving monochromator, consisting of two
toroidal mirrors, a grating, and slit. The harmonics are first collimated by a 350
mm focal length toroidal mirror (TM1) at a 3◦ grazing angle that forms the first part
of a single off-plane grating pulse-preserving monochromator similar to the design
described by Frasetto et al [67]. The harmonics strike a motorized grating at a 4◦

grazing angle and are refocused by a second 350 mm focal length toroidal mirror
(TM2) at an adjustable slit. The monochromator grating has 150 grooves/mm and
is blazed for optimum diffraction efficiency for λ = 35 nm. The XUV harmonics
exiting the monochromator are typically monitored using an aluminum coated sil-
icon photodiode (PD). A single selected harmonic exiting from a slit is refocused
onto a sample by a last 350 mm focal length toroidal mirror (TM3) at a 3◦ grazing
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angle. This TM3 is electrically floated such that the photocurrent of the electrons
ejected from the mirror surface can be used as a passive XUV intensity monitor.

3.2 SBLS driver laser
Cavity enhancement for HHG involves a resonant coupling of a high power

frequency comb driver laser to a high-finesse optical cavity to support necessary
peak intensity for highly nonlinear HHG processes [60–62]. For these cavity-
enhancement applications, it is critical to operate mode-locked laser oscillators with
low noise [123–125]. This is because our enhancement cavity has the narrow ∼ 100
kHz linewidth, determined by the reflectivity of cavity mirrors. Any noise on the
comb usually broadens the comb linewidth [105], reducing the cavity-comb cou-
pling. To maximize the cavity-comb coupling, it is then necessary to operate the
laser near zero net group delay dispersion (GDD), where the comb linewidth is the
narrowest [123]. However, required noise specification can be difficult to fulfill with
our mode-locked oscillator based on nonlinear polarization evolution (NPE) [126]
for a number of reasons. Firstly, we found that being near zero net cavity GDD
in our NPE oscillator is not sufficient to achieve low-noise operation because the
details of NPE also affects the noise (e.g., waveplate positions and different mode-
locked states). Secondly, we learned that the Yb gain fiber used in our oscillator
is somewhat prone to photodarkening, which can cause noisy error signals feeding
back to the oscillator for laser stabilization. As shown in Appendix A.1, when we
observed photodarkening of the gain fiber, it degraded the performance of the NPE
oscillator such that we were not able to lock between the cavity and comb. This
ultimately led to permanent oscillator failure, motivating us to rebuild the laser cav-
ity.

This section describes upgrades made to the SBLS laser system and the efforts
to optimize it to the level of robustness and long-term stabilization. To achieve this
goal, we carefully rebuilt the laser cavity and optimized the net cavity GDD for low-
noise operation based on the previous lessons that we learned. The upgraded laser
system uses a more bulk electro-optic modulator (EOM) for the comb-cavity lock-
ing to increase the servo bandwidth. The NPE mode-locked oscillator is upgraded
from 83 MHz to 61 MHz with the installation of a YDFA that can boost the seed
power from the oscillator. The addition of a YDFA facilitates delivery of sufficient
power to the subsequent amplifier chain, minimizing a problem due to intermittent
power fluctuation from the NPE oscillator. The main reason for reducing the laser
repetition rate is to improve the energy resolution of our time-of-flight momentum
microscope (see Chapter 4 for more details). By increasing the time window be-
tween the pulses, more time-of-flight bins can be resolved with a given detector
time resolution, spreading the energy span through those bins. The repetition rate
reduction also makes high-pass filtering of photoelectron energy distributions eas-
ier.
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3.2.1 Oscillator construction
Our oscillator is a home-built Yb:fiber frequency comb laser passively mode-

locked based on NPE. The basic layout of our rebuilt oscillator is sketched in Fig.
3.3. The laser cavity consists of a 258 cm fiber section (all non-PM) and a 105 cm
free-space section with optical elements. The fiber section provides gain at 1030
nm and the Kerr-effect associated nonlinearity. The free-space optics control polar-
ization for NPE mode locking and compensate total dispersion of the oscillator.

The Yb gain medium is ideal for amplifying a light at 1030 - 1040 nm, where the
absorption and emission cross sections are largest [127, 128]. The pump laser is a
fiber Bragg grating stabilized diode laser (Oclaro LC96L76P-20R) operating at 976
nm and is driven by Thorlabs’s basic current and temperature controllers (LDC210C
and TED200C). The pump light, passing through a polarization insensitive isolator
(Iso1), is launched into the fiber section of the cavity with a 980nm/1050 nm wave-
length division multiplexer (WDM, Thorlabs WD202G-FC). The pump laser’s fiber
is PM and is just spliced onto the non-PM WDM fiber.

A fiber assembly is made up of a 20.5 cm single-mode Yb-doped gain fiber
(YB1200-4/125 from Thorlabs, 4.4 µm MFD), the ends of which are spliced onto
standard SM980 fibers terminated with anti-reflection coated, angled FC/APC con-
nectors. These end connectors are then plugged into fiber beam collimators (Thor-
labs PAF-X-5-C). The specifics of these fiber lengths are described in detail in Fig.
A.2 in Appendix A. The most important thing to note is that the fiber length fol-
lowing the gain fiber needs to be longer for easier mode locking. When this section
of the fiber was made condiderably shorter, we could not mode-lock the laser at
all. The fiber length right after the gain fiber is made to 105.5 cm, long enough to
maximize the nonlinear effect for easier NPE mode locking. The relative lengths of
other undoped fiber parts do not need to be controlled precisely.

In the free-space section, a pair of diffraction gratings (600 groove/mm, Wasatch
photonics 2254-B-21) and a right-angle prism retroreflector (RP, Thorlabs PS908H-
C) together constitute a dispersive delay line for compensating total dispersion in
the oscillator. The second grating (G2) is mounted on a mechanical translational
stage for finding zero dispersion (see Section 3.2.2). The first grating (G1) is glued
to a piezo-electric transducer (PZT) to control the comb’s carrier-envelope offset
frequency for cavity-comb locking. The gratings are aligned parallel to each other
at the Littrow angle,

2sin(α) = λ/N ⇒ α = 18◦ (3.1)

whereN = 600 groove/mm is the grating pitch, α is the angle of incidence measured
from normal, and λ = 1030 nm is the center wavelength. If the grating pair is not
aligned in parallel, different spectral components point to different directions in the
far field, introducing spatial chirp, which will then reduce mode matching when
the beam is launched back into the fiber. The zeroth-order transmitted beam is
used for triggering the delay-line detector (DLD) for our momentum microscope
(see Chapter 4). The first-order transmitted beam reflects off the retroreflector RP
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with a lower beam height. This allows the first-order diffracted beam to be clearly
separated from the input beam.

Other optical components in the free-space sections are three zeroth-order wave-
plates used for NPE mode locking and a polarizing beam splitter (PBS) cube as an
output coupler reflecting the vertical component out of the cavity. A Faraday isola-
tor (Iso2, Thorlabs IO-3D-1030-VLP) ensures that only the horizontal component
of 1030 nm light passes through QWP to the fiber collimator C2.

Our upgraded oscillator uses a commercial EOM (EO-PM-NR-C2 from Thor-
labs) with a 45 mm MgO doped LiNbO3 crystal (GVD = 291.05 fs2/mm) and a
half-wave voltage of Vπ = 250 V. The EOM provides 1) phase modulation side-
bands and 2) a fast actuation on the oscillator cavity length for cavity-comb locking
(see section 3.3.2 for the locking scheme). The previous oscillator used a home-
built EOM with a 4 mm LiTaO3 crystal (United Crystal, GVD =224 fs2/mm) and a
Vπ = 3 kV [122].

The output spectrum of the current 61-MHz oscillator is shown in the inset of
Fig. 3.3. Compared to the previous 83 MHz oscillator, the spectral bandwidth is
reduced almost by a factor of 2. This is most likely due to the fact that the current
fiber assembly is made much longer by 80 cm and thus has more residual third-order
dispersion.

Figure 3.3: Basic layout of the upgraded 61-MHz mode-locked oscillator. QWP
= zeroth-order quarter-waveplate, HWP = zeroth-order half-waveplate, PBS = po-
larizing beamsplitter cube, G1/G2 = grating pair, RP = roof reflecting prism, EOM
= electrooptic modulator, Iso = isolator, M = silver mirrors, WDM = wavelength
division multiplexer, C1/C2 = fiber beam collimators. The 83-MHz vs. 61-MHz
oscillator spectra are compared in the inset.
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Figure 3.4: Parallel transmission gratings at the Littrow angle. At the Littrow
angle, α = β and the input wavevector kin is parallel to the diffracted wavevector
kout. To achieve a parallel configuration, as far as possible in the far field, the
zeroth-order transmitted and first-order diffracted beams should be level in height
(∆z = 0) with a constant spatial separation ∆y between the two beams. The grating
spacing G can be tuned by ∆G for finding net zero dispersion.

3.2.2 Net zero-cavity dispersion
In our case, the frequency comb is coupled to a resonant enhancement cavity

for generating HHG. For this cavity-enhanced -HHG application, it is important to
operate the mode-locked comb oscillator near net zero GDD [123], where optical
phase noise is substantially low. This task is particularly important for our upgraded
light source because the reduction of repetition rate to 61 MHz leads to a narrower
HHG cavity linewidth of ∼ 100 kHz. Substantially larger dispersion is now in-
troduced to the current oscillator because of the much longer fiber assembly and
more bulk EOM (see Appendix A.3) and therefore the oscillator dispersion must be
carefully compensated to achieve a low-noise narrow comb linewidth.

As a starting point, one can calculate the grating spacing for net zero GDD us-
ing the material parameters of the oscillator available in literature [129] and set the
corresponding spacing. This is described in detail in Appendix A.3. This method
generally leaves the cavity close to zero GDD, but the spacing needs to be further
fine tuned for true net zero GDD. A better way of achieving net-zero cavity dis-
persion can be by measuring its actual net GDD in situ [130] and compensating
accordingly.

In this work, we carefully optimize the oscillator dispersion using the technique
reported by Knox [130]. While we insert a knife-edge at incremental steps after a
dispersive material (G2) in the oscillator, the corresponding optical spectra (shown
in Fig. 3.5a) and pulse trains are monitored simultaneously to measure the center
frequencies ω0 of the spectra and repetition rates fr. Fig. 3.5b plots the group
delays Tg vs. ω0, where Tg = 1/fr. The oscillator’s net GDD is determined from
the slope dTg/dω0 of a linear fit (solid red). The oscillator dispersion is measured
to be +6576 fs2/rad. After compensating this normal dispersion by the grating’s
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anomalous dispersion, the measurement is repeated as shown in panel c. The net
GDD of the upgraded oscillator is indeed near zero.

Figure 3.5: Net zero GDD measurement of the upgraded mode-locked oscilla-
tor. As a knife edge blocks a spectrally dispersed beam step-wise from an indicated
direction, the centroid (ω0) of the measured spectrum in a) shifts and the group de-
lay (Tg = 1/fr) changes. The net group delay dispersion (GDD) of the oscillator
can be found from a slope dTg/dω0 as shown in b). After the cavity GDD is com-
pensated by the grating pair, the measurement is repeated to ensure the zero GDD
as shown in c).

3.2.3 Performance of upgraded laser system
One good metric for monitoring noise from a frequency comb laser is based on

the measurement of a comb tooth linewidth by heterodyne beats between the comb
and a quiet laser with a narrow linewidth. For this purpose, a CW Nd:YAG laser
(output 1064 nm) is often used in our lab as it has a narrow linewidth less than 1
kHz [131, 132]. Unfortunately, our upgraded oscillator outputs very little light at
this wavelength as shown in Fig. 3.3. Instead, we evaluate the performance of the
new oscillator and laser system based on an observed linewidth of our enhancement
cavity. For coupling a frequency comb laser to an enhancement cavity, the comb
linewidth needs to be narrower than the enhancement cavity linewidth determined
by the reflectivity of cavity mirrors. If optical noise carried in the driver comb is
substantial, it is expected to broaden the observed linewidth when we sweep across
the cavity linewidth.

Fig. 3.6a shows the transmission intensity of the intracavity light measured
through one of the high reflectors in the HHG cavity. The Lorentzian fit (dotted
curve) to this transmission signal results in the linewidth of ∼ 110 kHz. For the
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given cavity finesse F ∼ 500 and the FSR = 61 MHz, the cavity linewidth is ex-
pected to be around δω = FSRω/F = 120 kHz. The observed linewidth of ∼ 110
kHz is very close to the cavity linewidth determined by the mirrors’ power reflectiv-
ity, indicating that noise on the comb did not actually broaden the observed cavity
linewidth.

We additionally evaluate the performance of our laser locking system based on
the quality of a Pound-Drever-Hall (PDH) error signal and the measurement of unity
gain bandwidth. The current locking system uses the PDH method [133, 134] and
the bulk EOM in the oscillator to lock the laser to the enhancement cavity. As shown
in panel b, the quality of the PDH error signal for laser feedback (see section 3.3.2)
has been greatly improved compared to that from the previous 83-MHz system (see
Appendix A.1). Panel c shows the in-loop signals measured at different servo loop
gains when the laser is locked to the cavity. We achieve the unity gain bandwidth of
∼ 65 kHz, as indicated by the dotted line, and observe a servo bump at ∼ 85 kHz.
This is a substantial improvement over the old PZT locking system, where a servo
bump occurred at ∼ 30 kHz [122]. The careful optimization of zero net laser cavity
GDD and the use of the bulk EOM have greatly improved the performance of our
laser system with long-term stability. The upgraded oscillator has endured for more
than 3 years, much longer than a typical lifetime of about one year for the previous
NPE Yb:fiber oscillators used in our lab.

Figure 3.6: Performance of the upgraded mode-locked oscillator based on
enhancement cavity-comb locking. a) Oscillator performance based on the
linewidth measurement of enhancement cavity transimission shown in the solid line
(Lorentzian fit in the dotted line). b) PDH error signal from the enhancment cavity.
c) Locking performance based on in-loop PDH error signals at different servo loop
gains when the laser is locked to the enhancement cavity.

3.2.4 Jin-amp: YDFA
Construction. The new 61-MHz oscillator outputs the average power of ≈ 45 mW
as measured reflecting off of the polarizing beamsplitter cube (PBS). This power
should be enough to seed our subsequent amplifier system for power amplification
but the power intermittently dropped, which could be an issue for lasing in the
subsequent amplifier. This problem has motivated us to build another preamplifier
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that can always provide sufficient seed power to the subsequent pre-amplifier. It is
an Yb-doped fiber amplifier (YDFA), commonly called Jin-amp in our lab, named
after myself, in order to distinguish it from the subsequent amplifiers.

The design of the Jin-amp is shown in Fig. 3.7 and the details of the components
are listed in Table A.1 in Appendix A. All the fiber components in the Jin-amp are
PM and are fusion sliced to avoid connector damage from backreflections, which is
frequently observed in Yb-doped fiber amplifiers. The gain fiber is approximately
3 m long, purchased from nLIGHT (LIEKKI Yb300-6/125-PM). This fiber is rated
for its high resistivity to photodarkening which tends to degrade the performance
of many Yb-doped fiber lasers and amplifier systems [135–138]. The gain fiber is
pumped with a 980-nm pump diode in the forward direction so it copropagates with
a 1030-nm seed light via the WDM1. An additional WDM (WDM2) is necessary
upstream in the pump line to prevent any amplified spontaneous emissions reflect-
ing back to the pump diode. The 99:1 power splitter is to monitor the input power
of the 1030-seed light and is usually used for interlock monitoring.

Figure 3.7: Schematic layout of a YDFA and output characterization. The
output spectra and the output power of Jin-amp as a function of pump currents are
shown in the bottom insets.

Characterization. The output of the Jin-amp is characterized in the bottom of Fig.
3.7. The output power of the amplifier and their spectra are measured right after the
fiber stretcher before the polarizing beam splitter. The optput power is nearly linear
with the pump current within the given range of 0 - 790 mA, producing up to 150
mW maximum. It can in principle produce more if the pump power is increased
further. The bandwidth of the output spectrum is substantially reduced compared
to the input due to gain narrowing effects in the amplifier [139–141]. This spectral
narrowing seems to be independent of the pump current.

The compressed laser pulse after the grating compressors is shown in Fig. 3.8.
The autocorrelation is 260 fs and the retrieved pulse width assuming a Gaussian
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pulse shape is 260 fs ÷
√
2 = 180 fs.

Figure 3.8: Compressed pulse after installing the YDFA. The autocorrelation is
260 fs and the retrieved pulse width is 260 fs ÷

√
2 = 180 fs assuming a Gaussian

pulse shape.

3.3 HHG cavity and beamline
Now that our rebuilt Yb:fiber comb driver laser has shown itself to be a reli-

able high power low noise source, this section presents the efforts of rebuilding and
optimizing the HHG source and beamline to be suitable for high-performance time-
resolved ARPES measurements on µm region samples. To successfully apply the
cavity-enhanced HHG technique to time-resolved micro-ARPES, the system must
provide sufficent XUV flux and a small XUV spot size along with a healthy align-
ment of the beamline. With these technical goals in mind, important upgrades have
been made to the system, including rebuilding and realigning the enhancement cav-
ity and subsequent beamline. This work is necessary because of modifications of
the enhancement cavity, adapted to the driver laser’s repetition rate. Section 3.3.1
describes the enhancement cavity and XUV output coupling method. For a reso-
nant power enhancement and long-term stability of the light source, it is necessary
to match the teeth of the driver comb to the cavity modes via electronic feedback
loops. This is discussed in Section 3.3.2. Lastly, the performance of the upgraded
light source is discussed in Section 3.4.

3.3.1 Femtosecond enhancement cavity
Cavity layout

The layout of our upgraded enhancement cavity is shown in Fig. 3.9. The cavity
is folded with six mirrors, five of which are high reflectors (HR) with reflectivity
R > 99.95% and one of which is an input coupler (IC) with nominal transmission
of 1%. These mirror reflectivities give an over-coupled cavity [142] with a cavity
finesse F > 500 and a power enhancement > 250 without a Brewster plate. All
these mirrors are quarter-wave-stack dielectric mirrors for high power management
and designed for low GDD at 1030 nm, all purchased from Layertec gmbH.
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The cavity focus is formed between two high reflective focusing mirrors with
the same radius of curvature R = 15 cm. Harmonics are generated in a gas jet,
located near the cavity focus, by flowing a noble gas through a quartz capillary tube
with a 50-µm inner diameter. Our cavity is operated near the mid-point between
the inner and middle of the stability range, where it gives a small focal spot insen-
sitive to thermal distortion of the mirrors [143]. Operating the cavity more towards
the edge of the stability region has the advantage of attaining a smaller focal spot.
However, this may be undesirable because the thermal induced change in the radius
of curvature can push the stability region further toward the edge, which can lead to
a divergence of the beam mode and thus a lowered buildup. Although our intracav-
ity beam is somewhat elliptical at the selected region of the stability range, we send
in the spherical input beam and still achieve reasonable mode matching between
the input and intracavity beams. We use telescope lenses (positive lens with f =
+500 mm, negative lens withf = -200 mm ) to mode-match the input beam to the
intracavity beam.

A Piezoelectric transducer (PZT) is mounted on mirror HR5 to control the cavity
length for the comb-cavity locking described in Section 3.3.2. The leakage beam
transmitted through mirror HR4 is used to monitor the cavity performances such as
power, buildup factor, and the transverse mode of an intracavity light. The cavity
is kept under vacuum to minimize the air dispersion and the XUV absorption in the
air.

When operating the enhancement cavity on a daily basis, especially when gen-
erating the XUV harmonics, it is important to continuously dose the cavity optics,
including all the mirrors and the Brewster plate, with ozone to prevent their degrada-
tion from hydrocarbon contamination. It has been demonstrated that the XUV and
high peak power IR light can induce the degradation of the cavity optics by pho-
toinduced chemical reaction of the hydrocarbons present on their surfaces [61,144].
Such degradation usually causes the spatial distortion of the intracavity mode, re-
ducing both the cavity’s power enhancement and XUV reflectivity. To prevent these
effects, we pass pure O2 gas through a commercial ozone generator (Ozotech Posei-
don 220) and flow a generated mixture of ozone and O2 into 250 µm stainless steel
capillaries aimed at each cavity optic at a backing pressure of 150 Torr absolute.
The gas throughput is roughly 2 Torr-L/s.
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Figure 3.9: Layout of 61-MHz enhancement cavity.

XUV outcoupling

The method to couple the XUV harmonics out of an enhancement cavity is
one of the important considerations for designing a time-resolved ARPES system.
Several outcoupling methods [52, 145, 146] have been implemented by different
groups and this is well reviewed in Ref. [147]. The dielectric grating output coupler
[145, 148] can simultaneously couple the harmonics out of the cavity and separate
them with only one single optic. This method, however, causes the most distortion
of the outcoupled harmonics by introducing significant pulse-front tilt on them,
which leads to a temporal broadening of the pulse and an enlarged spot size on a
sample. Additionally, a realignment of the cavity is needed when switching to a
different harmonic because the harmonics are already well separated in the cavity
by the grating. Another outcoupling method of the XUV harmonics is the pierced-
mirror technique [146], where the harmonics are coupled out of a small hole in
the cavity mirror immediately following the HHG medium. While this method
can outcouple the higher-order harmonics with lower divergence, it shows poor
outcoupling for lower-order harmonics less than 40 eV and introduces intracavity
loss.

In our setup, we implement the Brewster outcoupling scheme, where the har-
monics are reflected out of the cavity by a thin sapphire wafer placed at Brewster’s
angle. We use a 250-µm thick sapphire wafer placed after the cavity focus at Brew-
ster’s angle for 1.03 µm. The outcoupled harmonics propagate collinearly with
the residual fundamental IR light reflected from the Brewster plate, which can be
used as an alignment guide for the rest of the beamline. The p-polarized IR light
transmitting through the Brewster plate remains in the cavity for subsequent passes.

Two main concerns with the Brewster plate scheme are thermal and nonlinear
effects. The Brewster plate is a dominant contribution to the dispersion of our
enhancement cavity (the group-velocity dispersion of sapphire at 1.03 µm ≈ 30
fs2/mm [149]). Although we have previously observed that the distortion of the
intracavity nonlinearity limits the power enhancement at high power, ∼ 10 kW
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intracavity power has been attained with 60 W laser power [150, 151].
Thermal distortion of the Brewster plate is another detrimental effect that de-

grades the performance of the enhancement cavity. Since several kW power circu-
lates in the cavity, substantial absorption can occur at the Brewster plate, which can
impact XUV beam pointing in the subsequent beamline. Stable beam pointing is
very critical for time-resolved photoemission measurements, especially on samples
with µm-size flakes. To minimize thermal distortion, the Brewster plate is glued to
a high emissive anodized aluminum (Al) plate with a high thermal conductive and
low outgassing epoxy (two components : 70-3812RNCGR15 and 70-3812CCL16
from Epoxies ETC.). The combined wafer and plate is mounted on a mechanical
stage, rigidly fixed to the optical table by a thick, wide copper braid serving as a
heat sink. This mounting scheme has provided outcoupling with stable pointing for
many hours of continuous operation as long as the cavity-comb lock is maintained.

Figure 3.10: Schematic of Brewster plate mount.

3.3.2 Comb-cavity locking scheme
The resonant coupling between a frequency comb driver laser and enhancement

cavity involves matching the comb repetition rate fr to the cavity FSR (or vice
versa) and the comb carrier-envelope offset frequency f (comb)

0 to the cavity offset
frequency f (cav)

0 . This is typically achieved by implementing two active feedback
loops with actuators. Key elements for each feedback loop are an error signal that
measures a deviation of the laser frequency from some reference value, a loop filter
that produces a conditioned error signal for feeding back to the laser, and an actuator
which changes the laser frequency to a desired setpoint. If a feedback is correctly
set up, the laser system automatically adjusts the output frequency according to an
error signal. In this work, the frequency comb driver laser is locked to the cavity
using a two-point Pound-Drever-Hall (PDH) lock [133,134] as shown in Fig. 3.11.

Generation of PDH error signal

The PDH error signal is generated in the following way [134]. The phase of the
incident laser beam is modulated with an EOM in the oscillator, driven by a 2-MHz
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sine wave output from a local oscillator (LO). This phase-modulated incident beam
has two symmetric sidebands, ωc ± Ω, around the carrier frequency ωc. The beam
reflecting from the cavity is a coherent sum of a promptly reflected beam, which has
never passed through the input coupler (IC), and a small fraction of the intracavity
beam that leaks through the IC. This reflected beam is dispersed with a diffrac-
tion grating and two different portions of the spectrum, λ1 and λ2, are sent to two
100-MHz bandwidth photodiodes (PDs) to set two separate feedback loops. Each
PD detects the reflected power containing many terms: DC terms, Ω terms arising
from an interference between the carrier and two sidebands, and 2Ω terms result-
ing from two sidebands interfering with each other. This PD signal is demodulated
with Ω′ = 2 MHz sine wave using a double balanced mixer. To extract the phase
of the reflected carrier, only sin(Ωt) and cos(Ωt) terms matter. When we mix the
modulated sin(Ωt) term with the demodulation sin(Ω′t) wave, the mixer outputs the
cosine signals at both the difference (Ω−Ω′) and the sum (Ω+Ω′) frequencies. For
Ω = Ω′, these two output signals become a DC and 2Ω signal, respectively. The
high frequency term is eliminated with a low-pass filter (LPF) to isolate the DC
term, which is our error signal. The product of the other cos(Ωt) term and sin(Ω′t)
results in the vanishing DC signal and naturally eliminate this cos(Ωt) part after the
LPF.

fr locking

The locking scheme between the comb fr and the cavity FSR is indicated in
the blue solid and dashed arrows in Fig. 3.11. We use a commercial PI2D type
controller (D2-123 Vescent Photonics) as a loop filter to servo the error signal on
the oscillator EOM for a fast control of the laser fr (see the blue solid arrows). The
PDH error signal is an input to the loop filter and the fast output servo signal is
amplified in a high-voltage (HV) amplifier (HVA200 from Thorlabs). The ampli-
fied signal is combined with a 2-MHz sine wave in a bias tee, which provides two
frequency modulation sidebands on the carrier and a high voltage feedback signal
to the EOM. For a long term stabilization of the fr locking, it is necessary to use
another actuator that can correct a slow drift of the cavity FSR due to low frequency
mechanical perturbations. As shown in the blue dashed arrows, the integrated servo
signal from the auxilary output port of the same loop filter feeds back to a PZT
mounted on one of the cavity mirrors, HR5, to control the length of the cavity. If
the PZT is out of travel range, we manually adjust a picomotor to bring it back near
a resonance and lock the cavity to the comb.

Locking comb breathing mode

Once the above fr locking is accomplished, the slow comb breathing mode
needs to be controlled in order to match the comb f (comb)

0 to the cavity f (cav)
0 for a

maximum comb-cavity coupling [152]. This is accomplished via a separate servo
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loop using a home-built integrator (see Ref. [151] for the details of the integrator).
The schematic is shown in the red portion of Fig. 3.11. The output signal is ampli-
fied in an HV amplifier and then sent to the PZT grating actuator in the oscillator.
This comb breathing is usually a slow process, observed on a minute time scale.
We can correct this drift manually without the active feedback, or we can also lock
using the integrator.

Figure 3.11: Two-point Pound-Drever-Hall locking scheme. Two active feed-
back loops are implemented to lock a driver frequency comb to an enhancement
cavity. The comb’s repetition rate is locked to the cavity FSR via a fast oscillator
EOM as shown in the blue portion. The comb carrier-envelope offset frequency
is matched to the cavity offset frequency using a grating PZT in the oscillator as
shown in the red portion.

3.4 Performance of HHG light source and beamline

3.4.1 The XUV spot size
To measure the XUV spot size at the sample, we record the photoelectron im-

age from a silicon substrate with photoemission electron microscopy (PEEM, see
Chapter4 for more details). The experimental setup is shown in Fig. 3.12b. Har-
monics generated in argon at a cavity focus are outcoupled, collimated by a first
toroidal mirror TM1 (f = 350 mm), and refocused by a second toroidal mirror TM2
(f = 350 mm) at a slit. The 21st harmonic exiting the slit plane is 1:1 imaged to the
sample plane with a last toroidal mirror TM3 (f = 350 mm).
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Fig. 3.12a shows the image of the 21st harmonic beam along with the vertical
and horizontal lineouts through the image centroid. The data indicates an elliptical
beam with a 24 µm FWHM in the horizontal and a 16 µm FWHM in the vertical
dimension. This beam size is comparable to what is used in synchrotron [153]. In
general, a small spot size is useful for measuring inhomogeneous samples with µm
size domains. It also requires less pump power for achieving a given fluence of
time-resolved ARPES measurements.

Figure 3.12: The XUV spot size measurement. a) The PEEM image of the 21st
harmonic from argon measured on a silicon substrate at the sample plane. b) The
experimental setup. The cavity focal plane, where harmonics are generated, is im-
aged to the slit plane with two 350 mm focal length toroidal mirrors TM1 and TM2
and the exit slit plane of the monochromator is 1:1 imaged to the sample plane using
another toroidal mirror TM3 (f = 350 mm). The photoelectron image is recorded
using real-space PEEM (see Chapter 4).

3.4.2 The XUV flux
Fig. 3.13 shows a typical XUV harmonic spectrum from argon from the up-

graded 61 MHz light source. The XUV flux is recorded using an aluminum coated
silicon photodiode (PD in Fig. 3.1) right after the exit slit while rotating the grat-
ing in the pulse-preserving monochromator. The measured spectral widths in Fig.
3.13 are determined by the low resolving power of the monochromator and do not
reflect the intrinsic harmonic linewidths. The XUV flux of ∼1011 photons per sec-
ond (γ/s) is generated in the range of photon energies from 20 to 40 eV. The flux
is not corrected for the monochromator efficiency nor Brewster plate reflectivity
and therefore ∼1011 γ/s over a broad tuning range is expected to be delivered to a
sample in the time-resolved ARPES endstation.

In Fig. 3.13, the argon harmonic spectra from the previous 88 MHz vs. up-
graded 61 MHz light source are also compared at different intracavity average pow-
ers. When comparing the two spectra (navy solid and light blue dashed curves) at
8 kW average power, the 88 MHz source has barely produced HHG while the 61
MHz source has produced a flux of more than 1011 γ/s. Clearly, we can now gener-
ate HHG at lower average power from the 61 MHz light source. Despite the lower
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repetition rate, the light source still generates similar average harmonic flux when
compared to the 88 MHz system at 10 kW average power.

Figure 3.13: Optimized XUV harmonic spectrum in argon from the upgraded
61 MHz light source. For comparison, the harmonic spectra from the 88 MHz
previous light source are plotted together at different intracavity average powers.
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Chapter 4

Optimization of ToF-Momentum
Microscopy for High-performance
Time-resolved ARPES

4.1 Introduction
Time- and angle-resolved photoelectron spectroscopy (Time-resolved ARPES)

based on high harmonic generation (HHG) has become an essential tool for study-
ing excited-state dynamics with the full Brillouin zone coverage. However, most
time-resolved XUV ARPES studies have been previously limited to the high-fluence
regime due to severe data rate limitation imposed by space charge issues. In pho-
toemission measurements, space charging, arising from the mutual Coulomb in-
teraction of photoelectrons emitted from a sample, causes spectral broadening and
shift [43–47], limiting the XUV flux that can be applied to the sample. To avoid
this detrimental effect, XUV photoemission measurements have been performed
with several orders of magnitude lower data rate, precluding the study of the intrin-
sic dynamics of excited states in weakly excited systems.

Recently, HHG-based time-resolved ARPES has achieved large gains in coping
with such data-rate problems. MHz HHG systems, achieved either via single pass
HHG with tight focusing [54] or cavity-enhanced HHG [52], has now implemented
the new technique of time-of-flight momentum microscopy (ToF-MM) [63, 64] for
photoelectron analyzers. ToF-MM enables simultaneous detection of the full 3D
(kx, ky, E) distribution of photoelectrons emitted from the full 2π solid angle, dra-
matically increased data rate by several orders of magniude higher than conven-
tional hemispherical analyzers. ToF-MM can also select photoemission signals
from micron-size regions of interest on the sample via selectable field apertures in
the front end of the electron microscope, enabling micro-ARPES from inhomoge-
neous samples. A powerful combination of a MHz XUV source and ToF-MM has
indeed enabled breakthroughs in time-resolved ARPES studies in the previously
inaccessible low-fluence limit [25, 54, 68].

Applying ToF-MM to intensity-demanding problems of time-resolved XUV
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photoemission is very promising [25, 54, 65, 66, 68, 154] for studying low-fluence
electron dynamics across the full Brillouin zone. However, there are also major
challenges arising from detector limitations and space charge, as discussed by Mak-
lar et al. [51]. In our setup, we combine a cavity-enhanced HHG source and ToF-
MM operating at 61 MHz and record data with a 3D time- and position-resolving
delay-line detector based on microchannel plates (MCPs). When working at such a
high repetition rate, the immediate challenge arises from detector saturation. With
our 61 MHz repetition rate, 1 electron per pulse can produce 60 million photoelec-
trons per second, far more than what the MCPs can typically handle, which is at
most 107 electrons per second. Additionally, the high repetition rate can further
limit detector energy resolution. We have only a 16-ns time window (1/fr) be-
tween the pulses and 200-ps detector resolution (∆T ) gives only 80 resolved ToF
bins. For the full energy range of Erange = 20 eV of photoelectrons emitted from the
sample, for example, this yields the detector resolution of ∆E = Erange∆T/(1/fr)
= 240 meV. The only way of gaining the resolution in this case is to narrow the
energy span. Thus, both of these constraints make electron filtering essential in our
setup.

Electron filtering is critically important for high quality time-resolved ARPES
measurements with high dynamic range as needed to study samples under pertur-
bative excitation. In the ToF-MM method, the strong accelerating extractor field
of typically several kV/mm at the sample effectively pulls all photoelectrons, even
unimportant secondary ones, into the microscope column. The corresponding va-
lence band distribution contains a substantial amount of secondary low-energy elec-
trons. If the full distribution is incident on the detector, it does not only saturate
the detector but also degrades the photoemission signal of interest. For the goal
of studying electron (not hole) dynamics, only electrons above EF matter and the
suppression of all other electrons below is not expected to change the physics of
interest. Thus, by rejecting most of the valence band signal, one can attain high dy-
namic range of a time-resolved measurement while mitigating detector saturation.

To address these detector limitations, we implement a simple high-pass filter
(HPF) scheme using a retarding field between two parallel grids. The scheme and
optimization of the HPF grids is discussed in section 4.3. Once the HPF config-
uration is optimized, we study how the HPF affects real- and momentum-space
resolution, which is detailed in section 4.4. Once the detector limitations have been
resolved by high-pass filtering electrons, the space charge issue remains a challenge.
We discuss the space charge characterization in section 4.5.

4.2 Overview of ToF-momentum microscope
The schematic cross-section of the ToF-momentum microscope with electron

trajectories is shown in Fig. 4.1a. The front end of the microscope is a photoemis-
sion electron microscope, where the sample, extractor, and focus lens together form
a cathode lens. The strong accelerating extractor field of typically several kV/mm
at the sample pulls all emitted photoelectrons into the microscope column. The
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microscope can operate either in real-space or momentum-space imaging modes.
Momentum-space images are formed on the back focal plane (BFP) of the objec-
tive. Real-space images are formed later in the zoom optics on the field aperture
plane, where a group of nine selectable field apertures from a few µm to a few mm
is located. By inserting one of these apertures, photoemission signals can be se-
lected from a µm-sized region of interest on the sample, enabling micro-ARPES.
A “contrast” aperture placed in the backfocal plane of the objective lens allows for
image adjustment and aberration correction when working in the real-space imag-
ing mode. For a given operational mode, the subsequent imaging of either the back
focal plane or the real-space plane via the projection optics transfer the image to the
detector with a desired magnification. ToF energy discrimination of photoelectrons
occurs in the 0.9 m ToF-drift section.

We use the 3D time- and position-resolving delay-line detector (DLD from Sur-
face Concepts) based on microchannel plates (MCP) for electron detection and use
61-MHz pulses from our mode-locked oscillator (the zeroth-order transmitted beam
from the first grating) for triggering the DLD, which takes only up to 8 MHz. To
divide the repetition rate down, we first convert the 61-MHz optical signal to an
electrical signal using a fast photodiode (EOT 3000) with rise time < 175 ps and
a 30 GHz RF amplifier, and feed it into SRS DG645 pulse generator, the divided
output of which then triggers the DLD.

Figure 4.1: a) Schematic view of our ToF momentum microscope with electron
high-pass filter, illustrating a momentum-space image formed on the back focal
plane of the objective. The full photoelectron signal, illustrated in b), is cut by the
full high-pass filter, leaving only a few eV near the Fermi level in c).

4.3 High-pass filter (HPF) scheme
In our setup, we implement a simple PHF scheme based on two parallel grids

with a net transmission of 56 %. Fig. 4.2 shows the layout of our HPF grids. The
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HPF grids are placed 2 mm away from the MCP and the space between the grids are
3 mm. The first and second grids are called ToF grid and HPF grid, respectively, and
HPF grid is a place for applying a retarding voltage. Retarding voltage VHPF is set
relative to sample voltage Vs such that only electrons with kinetic energies greater
than the potential difference VHPF − Vs can pass through a potential energy barrier.
The MCP voltage is typically set at 200 V where electron quantum efficiency is
maximized.

We have previously experimented the optimum HPF setup using different grid
configurations and different types of grids and have learned a few important lessons.
The results are shown in Appendix B.1. First, when the two grids were at the
end of the ToF tube, microlensing [155] was found to limit momentum resolution
significantly. Mesh holes in the grids disturb incoming electric field lines and this
acts as local diverging lens. We thus placed the grids closer to the MCP in order
to optimize the microlensing effect. Although the wires in the second grid can
still act as a diverging lens in this optimized geometry, the propagation distance
from the second grid to the detector is very short, which is expected to minimize
the microlensing effect. We also learned that the first grid is not optimal for HPF
because it stretches the electron pulse substantially (see Fig. B.1b in Appendix).
We have thus arrived at this optimal geometry shown in Fig. 4.2.

The HPF suppresses signal below its cutoff energy by more than a factor of 3
× 103 as shown in Fig. 4.1c, limited by dark MCP counts and background signal
intensity. The HPF allows us to cut away strong valence band signal and concentrate
on the ∼ 4 eV wide energy region from < 1 eV below to 3 eV above the top of the
valence band structure, comprising only about 1 % of total photocurrent. In what
follows, we discuss to what extent the optimized HPF configuration affects real-
space and momentum-space resolutions.

Figure 4.2: Optimized geometry of the grid-based high pass filter.
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4.4 HPF performance

4.4.1 Spatial resolution
We optimize real-space resolution on a chessboard sample consisting of known-

sized rectangles using a Xenon-Mercury (Xe-Hg) lamp. An Xe-Hg lamp has the
advantage of providing high imaging contrast and uniform illumination on the entire
sample. However, the lamp has limited energy bandwidth and is therefore unable to
produce a wide range of photoelectron’s kinetic energies like actual measurements
with XUV photons. We thus scan sample (SA) voltage relative to HPF voltage to
produce the wide energy range of photoelectrons emitted from the sample. We also
perform an additional experiment where HPF voltage is instead scanned referenced
to SA for producing a similar range of energies in order to study the chromatic
abberation effect.

The real-space images of the chessboard sample at selective kinetic energies
of electrons for SA and HPF scans are shown in Fig. 4.3a and d, respectively.
The momentum integrated electron counts vs. kinetic energies are plotted in panel
b. In this figure, the cutting edge of HPF is about 1 eV wide. To study how our
HPF affects spatial resolution, we make lineouts on the 10 µm×10 µm squares
(the yellow lines) and fit the rising edges with an error function. Corresponding
resolutions on both sample and detector (DLD) planes are shown in Fig. 4.3b. The
resolution on the sample plane is approximately 4 - 5 µm at the higher energies
> 1 eV and becomes worse near the cutoff. Especially for SA scan the resolution
near the cutoff is worse by almost a factor of two compared to HPF scan. When
SA voltage is scanned, photoelectrons travelling toward HPF with different kinetic
energies experience chromatic abberation. This abberation effect seems to be more
pronounced near the cutoff, also as seen from comparing panels a and d, and this
may be the reason for more degraded resolution when SA voltage is scanned.
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Figure 4.3: Spatial resolution. Real-space images of a chessboard sample at se-
lective kinetic energies a) when sample (SA) voltage changes relative to high-pass
filter (HPF) voltage (referred to as SA scan) and d) when HPF voltage changes rel-
ative to SA voltage (referred to as HPF scan). Energies E − EHPF represent the
kinetic energies of photoelectrons at HPF. b) Momentum integrated electron counts
vs. kinetic energies. c) Real-space resolution on both sample and detector (DLD)
planes. The resolution δx is determined from fitting the sharpness of lineouts on the
10 µm×10 µm squares (the yellow lines) by an error function.

4.4.2 Momentum-space resolution
We optimize momentum-space resolution on Au(111) with a momentum grid

inserted in the backfocal (Fourier) plane using an XUV probe light with hν = 25 eV.
The resolution is determined from the sharpness of a momentum grid line along the
direction indicated by a yellow line in the momentum-space images shown in panels
c - e. The images in panels c - e represent a surface state in Au(111) and are obtained
by integrating 350 meV below EF as shown in panel b. The momentum resolution
is within ≈ 0.06 Å

−1
and it becomes slightly worse near the cutoff. Ironically, the

resolution well below the cutoff improves far more, almost by a factor of 2, in stark
contrast to the real-space resolution in Fig. 4.3. We do not know the origin of this
anomalous effect and more investigation is needed.

In summary, our grid-based HPF scheme in Fig. 4.2 shows good suppression of
secondary low-energy electrons. However, it degrades the spatial and momentum-
space resolution to some extent, especially near the cutoff.
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Figure 4.4: Momentum-space resolution. Momentum space measurements are
done on Au(111) with the 25 eV XUV probe light with the momentum-space grid
(k-grid) inserted onto the Fourier plane. a) Momentum resolution (δk) on the k-grid
edge (marked in yellow in panel c - e) by fitting an error function. Errorbars are
from 1-σ confidence interval of fits. b) Energy-momentum cut along M̄ − Γ̄− M̄ .
c) - e) Selective momentum-space images at different E - EHPF by integrating the
energy window of 350 meV ( marked as dotted lines of panel b) near EF .

4.5 Space charge characterization
Now that the detector limitations have been mitigated, the problem of space

charge remains. As discussed previously [51, 156], ARPES spectra recorded with
ToF-MM can experience space charge distortions at much lower photocurrents than
conventional hemispherical analyzers. Fig. 4.5 quantifies space-charge induced
energy shifts and broadening measured using the Fermi edge of Au(111) at the Γ-
point. By performing measurements with and without an insertable attenuator, we
can discriminate between the space charge effect and photon energy shifts due to
operating our HHG source with different driving laser intensity. Remarkably we
observe a notable energy shift of ≈ 50 meV already at 10 photoelectrons/pulse.
In turn, this suggests that large statistical noise on this number would cause an
additional energy broadening BPoiss = (dS/dN)∆N , where dS/dN is the energy
shift per extracted electron and ∆N =

√
N is the Poisson noise. Taking the value

of dS/dN from our data, in Fig. 4.5b, we compare the expected BPoiss with total
measured space charge broadening Bsp.charge =

√
(B2

full −B2
atten). We conclude

that by measuring the number of electrons emitted every light pulse, one could, in
principle, significantly reduce energy broadening by correcting for the space charge
shift on a shot-by shot basis.
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Figure 4.5: Space charge characterization. Fermi edge shift and broadening
measured at room temperature at Γ on Au(111) with full and attenuated probe flux
and at different initial XUV source intensities.
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Chapter 5

Pseudospin Distributions of
Photoexcited Electrons in Graphene
by Tight-binding Simulations

5.1 Introduction
The electronic band structure of graphene is often modeled by a simple tight-

binding model. A tight-binding model is based on an assumption that electrons are
“tightly” bound to their own atomic cores but only weakly perturbed by interaction
with nearby atoms. For those crystals with weakly interacting atoms, the elec-
tronic wavefunctions can be represented with a relatively small number of localized
atomic wavefunctions [3], i.e. those corresponding to the atomic orbitals in the
unit cell, via the so-called linear combination of atomic orbitals (LCAO), and also
commonly known as the Hückel model in chemistry. Such tight-binding LCAO is
particularly useful for graphene since it yields a simple analytic formula [157,158],
making the band structure of this sp2 covalent bonded material even simpler to cal-
culate. Despite this simplicity, the model reproduces the π energy bands near the
Brillouin zone corners (K points) surprisingly close to an ab-initio study with only
the first nearest-neighbor interaction accounted for [159].

Motivated by this merit, the analytic tight-binding approach is often imple-
mented to study the optical selection rules in doped/undoped graphenes [1, 160–
163], and also other graphene derivatives such as carbon nanotubes [164]. Ac-
cording to a theory, phtoexcitation of electrons from the valence band to the con-
duction band creates a strong pseudospin polarization around the K points via
the k-depencence of the optical matrix element [1]. How this initial pseudospin
anisotropy relaxes both in time and energy has been the subject of previous pump-
probe experiements. However, these initial pseudospin polarized electrons are only
expected to be seen in the nonthermal electron distributions within the lifetime
of ≈ 50 fs with low fluence where electron-phonon scattering is dominant [160].
Thus, the direct observation of this nonthermalized momentum anisotropy has al-
ways been challenging in optical and time-resolved ARPES experiments.
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In our work, with a combination of a high-repetition rate XUV light source
and time of flight momentum microscope, we have been able to directly resolve
the nonthermal electron distributions for neutral graphene under low fluence with
strong pseudospin polarization persisting through a few optical phonon scattering
events. The experimental results have been shown in Chapter 6 and also published
in Ref. [68]. We have also simulated initial momentum distributions of pseudospin-
polarized electrons across the full Brillouin zone by simple-tight binding theory,
resulting in excellent agrement with experiment. The central aim of this chapter is
thus to provide the simulation details and to ultimately help understand our data.
Our simulations incorporate the analytic expressions of the band structure and both
optical and photoemission matrix elements using Ref. [1] and [78]. The photoe-
mission matrix element is essential in modeling the time-resolved ARPES signals
as it can strongly modulate photoemission intensity, even completely suppressing
it in some cases with the so-called “dark corridors” [79]. For studying the pump-
induced momentum anisotropy, this photemission matrix element effect must be
distingushed from the pure optical effect.

This chapter is organized as follows. Following a brief overview of graphene’s
lattice structure in Section 5.2.1, the band structure is calculated next in Section
5.2.2. The photoemission matrix element and the optical pump matrix element are
discussed in sections 5.2.4 and 5.2.3 respectively. Lastly, Section 5.3 combines
all three ingredients, i.e. the band structure, the photoemission matrix element, and
optical matrix element, to simulate initial pseudospin distributions in the conduction
band. The simulated images are compared to the experimental images for both the
valence band and the conduction band.

5.2 Microscopic simulation details

5.2.1 Lattice structure
Graphene lattice is shown in Fig. 5.1. Graphene is a single-atomic layer of

carbon atoms arranged in a 2D honeycomb lattice. By convention, the honeycomb
lattice is considered a non-Bravais lattice [2] because the orientations of any two
adjacent lattice points are not equivalent, i.e. for points 1 and 2 in Fig. 5.1a, the
page has to be rotated by 180◦ to match their orientations. Instead, the honeycomb
lattice is usually represented as a 2D triangular Bravais lattice with a two-atom
basis. The unit cell, shown in a shaded parallelogram, contains two carbon atoms
A and B, each of which forms sublattices A and B. In this way, the two-atom basis
unit cell can tile the entire honeycomb lattice without void or overlap when it is
translated by the lattice vectors R = n1a1 + n2a2 where n1 and n2 are integers and
a1 and a2 are two primitive lattice vectors. Here the vectors a1 and a2 are defined
for sublattice A as

a1 =

√
3

2
ax̂− 1

2
aŷ, a2 =

√
3

2
ax̂+

1

2
aŷ (5.1)
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with the lattice constant a = |a1| = |a2| = 2.46 Å [165]. The positions of the two
atoms 1 and 2 in the unit cell are specified by the position vectors,

τ 1 = 0, τ 2 = a0x̂. (5.2)

The vectors δj directly connect atom 1 in sublattice A to the three nearest neigh-
boring sublattice B atoms:

δ1 = −1

2
a0x̂+

√
3

2
a0ŷ, δ2 = a0x̂, δ3 = −1

2
a0x̂−

√
3

2
a0ŷ (5.3)

where a0 is the length of the connecting vector |δj| = a/
√
3, equal to the C-C bond

length.

Figure 5.1: Graphene lattice. a) Direct-space honeycomb lattice composed of
two inverted triangular sublattices A and B. The unit cell, indicated by a shaded
parallelogram, contains two atoms A and B. Vectors a1 and a2 are the primitive
lattice vectors defined for sublattice A. Point 1 in sublattice A is connected to the
nearest neighboring B atoms by vectors δj with j = 1, 2, 3. b) Reciprocal-space
lattice showing the reciprocal lattice vectors b1 and b2 and the first Brillouin zone
(shaded light blue) with high symmetry points Γ at the origin, K at the corners of
the Brillouin zone, and M the mid point between neighboring Ks.

Reciprocal lattice vectors b1 and b2 satisfying ai · bj = 2πδij are given by

b1 =
2π

a

[√
3

3
x̂− ŷ

]
, b2 =

2π

a

[√
3

3
x̂+ ŷ

]
. (5.4)

The magnitude of the reciprocal lattice vectors is |b1| = |b2| = 4π/(
√
3a).

5.2.2 Band structure
The calculation of a band structure is in principle a matrix eigenvalue problem

for electrons moving in a periodic crystal potential. Within the Hartree mean-field
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approximation, these electrons behave independently, each of which obeys a one-
electron Schrödinger equation with the one-electron Hamiltonian of the form,

H(r) = Hat + U(r). (5.5)

The potential U(r) has the periodic symmetry of the underlying Bravais lattice,
U(r + R) = U(r) for all lattice vectors R [2, 3]. In the tight-binding limit, the
crystal Hamiltonian H(r) at each lattice point can be approximated by the localized
atomic Hamiltonian Hat, provided U(r) → 0 as r → 0.

Because of the translational symmetry and periodicity of the Bravais crystals,
the solution Ψ(r) to the one-electron Hamiltonian H in Eq. 5.5 should satisfy
Bloch’s theorem, |Ψ(r + R)⟩ = eik·R |Ψ(r)⟩. To preserve this Bloch condition for
graphene, we construct two sublattice basis functions via N linear superpositions
of carbon’s 2pz-atomic orbitals ϕ(r −Rµ),

|Φk
A(r)⟩ =

1√
N

N∑
RA

eik·RA |ϕ(r − RA)⟩ (5.6)

|Φk
B(r)⟩ =

1√
N

N∑
RB

eik·RB |ϕ(r − RB)⟩ (5.7)

where Rµ refers to the lattice vectors for sublattices µ = A or B. Then, the electron
wavefunction Ψ(r) is a linear combination of these two Bloch sums weighed by
tight-binding coefficients Cλ

µ(k),

|Ψλk(r)⟩ = Cλ
A(k) |Φk

A(r)⟩+ Cλ
B(k) |Φk

B(r)⟩ (5.8)

where the electronic states with different energies are distinguished by the addi-
tional index λ.

With the form of Ψλk(r) in Eq. 5.8, the Schrödinger equation H |Ψλk(r)⟩ =
Eλ

k |Ψλk(r)⟩ can be solved analytically to determine the band structure Eλ
k . In order

to do so, one can multiply both sides of the the Schrödinger equation by the complex
conjugates of two sublattice basis functions ⟨Φk

A| and ⟨Φk
B| to obtain the following

matrix equation,[
HAA HAB

HBA HBB

](
Cλ

A(k)
Cλ

B(k)

)
= Eλ

k

[
SAA SAB

SBA SBB

](
Cλ

A(k)
Cλ

B(k)

)
. (5.9)

The transfer integral matrix elements Hmn = ⟨Φk
m|H|Φk

n⟩ and the overlap integral
matrix elements Smn = ⟨Φk

m|Φk
n⟩ can be determined by taking only the first nearest-

neighboring interaction into account, which is the most dominant contribution to the
matrix elements in the tight-binding formalism. Since the two sublattices A and B
are chemically equivalent, by symmetry, it follows that

HAA = HBB,HAB = H∗
BA,SAA = SBB,SAB = S∗

BA. (5.10)
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An off-diagonal element of the transfer integral matrix HAB, describing hopping
between A and B sublattice, is defined as

HAB = ⟨Φk
A(r)|H|Φk

B(r)⟩ (5.11)

=
1

N

∑
RA

∑
RB

eik·(RB−RA)⟨ϕA(r − RA)|H|ϕB(r − RB)⟩. (5.12)

For a fixed lattice point RA, the A atom has three nearest neighboring B atoms
positioned at RB,l = RA + δl with l = 1...3. Eq. 5.12 is then simplified to

HAB ≈ 1

N

∑
RA

3∑
l=1

eik·(RB,l−RA)⟨ϕA(r − RA)|H|ϕB(r − RB,l)⟩ = γ0f(k) (5.13)

f(k) =
3∑

l=1

eik·δl =

√
1 + 4cos(

√
3a0ky
2

)cos(
3a0kx
2

) + 4cos2(
√
3a0ky
2

) (5.14)

where the nearest-neighbor hopping integral is denoted as γ0 = ⟨ϕA(r−RA)|H|ϕB(r−
RB,l)⟩. For the diagonal transfer matrix element HAA,

HAA =
1

N

∑
RA

∑
R′
A

eik·(R
′
A−RA)⟨ϕA(r − RA)|H|ϕA(r − R′

A)⟩, (5.15)

if only the nearest-neighbor interaction is considered, the same-site (R′
A = RA)

exchange integral contributes most, in which case Eq. 5.15 becomes ϵ0 the energy
of an electron in the 2pz atomic state,

HAA ≈ 1

N
ϵ0

N∑
R

⟨ϕ(r − RA)|ϕ(r − RA)⟩ = ϵ0, (5.16)

if one uses Hϕ = ϵ0ϕ and the normalization of the atomic orbital ⟨ϕ|ϕ⟩ = 1. Since
ϵ0 is a k-independent constant value, it may be set to zero matching the zero energy,
the Fermi level, of neutral graphene.

Putting the results together, the general expression for graphene’s tight-binding
Hamiltonian with the nearest-neighbor approximation takes the form,

H =

 ϵ0 γ0f(k)
γ∗0f

∗(k) ϵ0

 . (5.17)

The overlap matrix elements SAA and SAB can be calculated in a similar way to the
transfer matrix elements. The resulting overlap matrix S is given by

S =

[
1 s0f(k)

s∗0f
∗(k) 1

]
(5.18)
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with the nearest-neighbor overlap integral s0 = ⟨ϕ(r − RA)|ϕ(r − RB,l)⟩. Solving
the secular equation H − Eλ

k S = 0 results in two energy eigenvalues,

E±
k =

ϵ0 ± γ0|f(k)|
1± s0|f(k)|

, (5.19)

for the conduction (+) and valence (−) band. The tight-binding coefficients are
given by

C±
A (k) = ± f(k)

|f(k)|
C±

B (k), C
±
B (k) =

1√
2(1± s0|f(k)|)

. (5.20)

Note that the values of γ0 and s0 cannot be determined by the tight-binding model
but can be calculated numerically using an alternative computational method such
as density-functional theory. The range of γ0 is typically from -3.0 to -2.5 eV and
that of s0 is from 0.06 to 0.13 eV [158,159]. In this work, ϵ0 = 0, γ0 ≈ -2.8 eV, and
s0 ≈ 0.1 are used, quoted from Ref. [1].

The resulting 2D band structure E±
k near the boundary of the first Brillouin zone

is shown in Fig. 5.2a. The most prominent feature of the band structure is that π
and π∗ bands cross at six corners of the Brillouin zone, known as the K points and
also “valleys” using semiconductor physics nomenclature. A cut through K−, Γ,
and K+ points in the band structure is also shown in Fig. 5.2b for different values
of s0. Non-zero overlap parameter s0 breaks symmetry between the conduction and
valence band particularly near the Γ point.

Figure 5.2: Band structure of graphene by tight-binding model. a) 3D energy
spectrum near the vicinity of the first Brillouin zone according to Eq. 5.19 with
γ0 = −2.8 eV and s0 = 0.1 eV . b) The band dispersion cutting through the ky axis
intersecting points, K−,Γ, and K+, of the band structure in panel a with s0 = 0.1
and s0 = 0. The cut is shown as the dotted line in the inset.
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5.2.3 Probe matrix element
The standard expression of ARPES intensity has been discussed in Chapter

2.1.5. Within the independent electron approximation, the single-particle spectral
function becomes a bare band dispersion, that is a δ-function at the Hartree-Fock
orbital energy ϵk. Using the calculated tight-binding band structure ETB(k) in Eq.
5.19, the ground-state ARPES intensity is written in the following form [69],

I(k, ε) ∝
∣∣Mk

f,i

∣∣2δ(ε− ϵk), (5.21)

Mk
f,i = e/m ⟨ϕk

f |A · p |ϕk
i ⟩ . (5.22)

Commonly known as the photoemission or probe matrix element, the one-electron
dipole matrix element Mk

f,i connects the one-electron initial state ϕk
i and the one-

electron final state ϕk
i through a perturbative Hamiltonian Hint ≈ A · p where A is

the vector potential of an incident photon field and p is the electron’s translational
momentum. Within the electric dipole approximation, the vector potential A be-
comes A(r) = A0e

iq·r = A0(1 + iq · r + ...) ≈ |A0|λ̂ where λ̂ is the unit vector
along the direction of the light polarization and q = (ω/c)n̂ is the wavevector of
the light with ω the angular frequency, c the speed of light, and n̂ the unit vector
along the light propagation direction. If one assumes the free electron final state
with one single plane wave only, the matrix element is further simplified to

Mk
f,i ∝ ⟨eik·r| λ̂ · p |ϕk

i ⟩
∝ (λ̂ · k)⟨eik·r|ϕk

i ⟩. (5.23)

Thus, the matrix element projects outgoing photoelectrons in the direction of a light
polarization via λ̂ ·k, and the details of intensity modulation in k-space depends on
the overlap of the outgoing free-electron plane wave and the initial state, ⟨eik·r|ϕk

i ⟩.
In what follows, the matrix element for graphene will be denoted Mλ

probe(k) with
the band index λ.

The photoemission matrix element for graphene has been previously modeled
by Shirley et al. using the dipole approximation within the tight-binding picture
[78]. Following Eq.5.6 - 5.8, the tight-binding wavefunctions of graphene take the
form

Ψλk(r) =
∑

R

eik·R
A,B∑
µ

Cλ
µ(k)ϕµ(r − (τ µ + R)) (5.24)

where the µth atomic orbital ϕµ at lattice site R in the unit cell is specified by the
position vector of the atom τ µ. Substituting Eq. 5.24 into Eq. 5.23 for the initial
state ϕk

i , the matrix element Mλ
probe(k), can be explicitly written as

Mλ
probe(k) ∝ (k · λ̂)

A,B∑
µ

Cλ
µ(k)e

−ik·τµ f̃µ(|k|)Yµ(k̂) (5.25)

∝ (k · λ̂)Cλ
B(k)e

ik·τB

[
Cλ

A(k)
Cλ

B(k)
e−ik(τA−τB) + 1

]
f̃(|k|)Y (k̂) (5.26)
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where f̃µ(|k|) and Yµ(k̂) are the respective Fourier transforms of the radial and
angular components of the µth orbital function, ϕµ(x) ≈ fµ(|x|)Yµ(x̂). Since the
unit cell contains two identical carbon atoms, f̃A(|k|)YA(k̂) = f̃B(|k|)YB(k̂) ≡
f̃(|k|)Y (k̂) is used in Eq. 5.26. For calculating ARPES intensity, only the square
of the matrix element |Mλ

probe(k)2| matters, written as

∣∣Mλ
probe(k)

∣∣2 ∝ ∣∣∣∣(k · λ̂)
∣∣∣∣2∣∣∣∣Cλ

A(k)
Cλ

B(k)
e−ik·(τA−τB) + 1

∣∣∣∣2∣∣∣∣f̃µ(|k|)Yµ(k̂)∣∣∣∣2 (5.27)

where the constant terms |Cλ
B(k)|2 and |eik·τB |2 in Eq. 5.26 are absorbed into a

proportionality sign.
We now consider each squared factor in Eq. 5.27 in more detail and discuss its

implication for the photoelectron distributions. First, k · λ̂ projects the photoelec-
tron’s total crystal momentum, k = k∥ + kz, in the polarization direction λ̂ of an
incident field. For our case of the p-polarized probe light impinging on the sample
at angle θ ≈ 48◦ as shown in Fig. 5.3a, k · λ̂ is given by

k · λ̂ = (kx, ky, kz) · (λx, 0, λz) (5.28)
∝ kx(cosθ) + kz(sinθ) (5.29)

where the out-of-plane component kz is determined by a relation ℏ2|k|2/2me =
hνXUV −W − ε with W ≈ 5 eV the work function and hνXUV = 30 eV. Because of
this polarization factor k · λ̂, an asymmetry is expected in the photoelectron angular
distributions.

Next, we follow the work by Podolsky and Pauling [166] to evaluate the Fourier
transform of the atomic wavefunction f̃(|k|)Y (k̂) in the third factor. For car-
bon’s 2pz orbital, the f̃ function is unimportant because it is just a constant, angle-
independent prefactor. Only the Y function contributes to the photoelectron angular
distributions through an angle-dependent term Pm

l (cosΘ), the associated Legendre
polynomial of degree l and order m. In this case f̃(|k|)Y (k̂) is just simplified to

f̃(|k|)Y (k̂) ∝ Pm
l (cosΘ) ∝ cosΘ (5.30)

with Θ = sin−1(k∥/k) (see Fig. 5.3a for photoemission geometry).
Lastly, the second squared term in Eq. 5.27 leads to interesting interference

effects. We refer to this interference factor as |ξ(k)|2,

|ξ(k)|2 ≡
∣∣∣∣Cλ

A(k)
Cλ

B(k)
e−ik·(τA−τB) + 1

∣∣∣∣2. (5.31)

Note that the modulation of |ξ(k)|2 arises from two effects. First, the ratioCλ
A(k)/Cλ

B(k)
in Eq. 5.31 indicates the relative phase between two sublattice wavefunctions, given
by

Cλ
A(k)

Cλ
B(k)

= − HAB(k)
|HAB(k)|

(5.32)

HAB = t
[
1 + e2πiβ1(k) + e2πiβ2(k)

]
, (5.33)
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where β1 and β2 are specified by the electron’s crystal momentum k through the
notation k = β1b1 + β2b2 with β1 = 2/3 and β2 = 1/3 for the K-points of
the Brillouin zone. Secondly, the exponent of e−ik·(τA−τB) in Eq. 5.31 involves a
difference between two atomic positions in the unit cell,

τA − τB = a0x̂ (5.34)

(see Eq. 5.2). This is equivalent to the path length difference between two photo-
electrons on sublattices A and B to the detector in ARPES measurements. Com-
bining Eq. 5.32 - 5.34, the final expression for |ξ|2 takes the following form,∣∣∣∣ξ(β1(k), β2(k))∣∣∣∣2 =

∣∣∣∣∣
[
1 + e−2πiβ1(k) + e−2πiβ2(k)

|1 + e−2πiβ1(k) + e−2πiβ2(k)|

]
e[2πi(β1(k)+β2(k))]/3 + 1

∣∣∣∣∣
2

.

(5.35)

We see that |ξ|2 varies with k near the corners of the Brillouin zone.
With the explicit forms of the three squared terms given in Eq.5.29, 5.30, and

5.35, one can simulate |Mλ
probe(k)|2 in Eq. 5.27. The simulated results for |Mλ

probe(k)|2
are shown in Fig. 5.3b and 5.3c at energy slices E − EF = ±1.2 eV. These are the
valence and conduction band energies, where we expect optical transition from the
valence band at −hνpump/2 = −1.2 eV to the conduction band at +hνpump/2 = +1.2
eV in our time-resolved ARPES experiment with hνpump = 2.4 eV. The interference
effects via

∣∣ξ(β1(k), β2(k))∣∣2 are clearly evident in both images as well as a left-
right symmetry due to the polarization factor k · λ̂. At the energy E − EF = −1.2
eV, |Mλ

probe(k)|2 vanishes completely in the outer part of the Fermi surface near
each K point due to a destructive interference between two photoelectrons emitted
from two chemically equivalent sublattices. This trend is reverse for the energy
E − EF = +1.2 eV.
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Figure 5.3: Probe matrix element. a) Photoemission geometry. Our p-polarized
probe light with hνprobe = 30 eV impinges on the sample at angle θ = 48◦ measured
normal to the sample plane. The square of the probe matrix element |Mλ

probe(k)|2
for b) the conduction band (λ = c) at E − EF = +1.2 eV and c) the valence band
(λ = v) at E − EF = −1.2 eV.

5.2.4 Pump matrix element
This section details the optical matrix element following from Ref. [1] and

[167]. Within the dipole approximation, the interband optical matrix element be-
tween two electronic states is given by [164, 168]

Mλ,λ′

k,k′ = ⟨Ψλ
k(r)| ∇r |Ψλ′

k′(r)⟩ (5.36)

where the band index λ′ and the wavevector k′ characterize states in the valence
band, λ and k characterize states in the conduction band, and ∇r is related to the
linear momentum operator via p = −iℏ∇r. This optical matrix element can be
determined analytically using the tight-binding wavefunctions defined in Eq.5.6 -
5.8,

Mλ,λ′

k,k′ =
1

N

A,B∑
µ,Rµ

A,B∑
µ′,R′

µ

Cλ∗
µ (k)Cλ′

µ′ (k′)e−i(k·Rµ−k′·Rµ′ ) ⟨ϕ(r−Rµ)| ∇r |ϕ(r−Rµ′)⟩ .

(5.37)

For a direct transition (k = k′), the nearest-neighbor interaction simplifies Eq. 5.37
to

Mλ,λ′

k,k = m
3∑

l=1

δl

|δl|

[
Cλ∗

A (k)Cλ′

B (k)eik·δl − Cλ∗
B (k)Cλ′

A (k)e−ik·δl
]

(5.38)
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where m = ⟨ϕ(r+ |δ1|x̂)| ∂x |ϕ(r)⟩ ≈ 3 nm−1 is used. With Cλ
A(k) and Cλ

B(k)
given in Eq. 5.20, the optical matrix element in Eq. 5.38 can be explicitly evaluated
as

Mc,v
pump(k) ≡ Mλ,λ′

k,k =
1√

1− s20|e(k)|2
m

|e(k)|
R
[
e∗(k)

3∑
l=1

eik·δl
δl

|δl|

]
. (5.39)

From here on, we change the notation from Mλ,λ′

k,k to Mc,v
pump(k) to distinguish it

from the probe matrix element.
Fig. 5.4 shows x and y components of |Mc,v

pump(k)|2 in the first Brillouin zone.
Both components are minimum near the six zone corners along the polarization di-
rections of pump pulses and maximum perpendicular to them. No optical transition
is expected at the Γ point since both x and y components vanish there.

Figure 5.4: Optical matrix element. a) x and b) y component of the optical matrix
element square |Mc,v

pump(k)|2 between the valence (v) and conduction (c) band.

5.3 Results and discussion

5.3.1 Valence-band pseudospin distributions
Fig. 5.6 compares the experimental photoelectron distribution for states near

E − EF =−1.2 eV to a tight-binding model,

I(k∥) ∝
∫ −1.16 eV

−1.21 eV
dε
[
δ(ε− ETB(k∥))× |Mv

probe(k∥,kz)|2
]
∗ h(k∥) . (5.40)

Here ETB(k) is the band structure given by Eq. 5.19 and Mv
probe(k∥,kz) is the probe

matrix element between the valence-band initial states and the single plane-wave
final states with wave vector k = k∥ + kz determined by energy conservation re-
lation ℏ2|k|2/2me = hνXUV − W − ε, with W ≈ 5 eV the work function and
hνXUV = 30 eV. The function h(k∥) used for convolution is a 2D Gaussian of ≈ 0.1

62



Å−1 FWHM reflecting the momentum resolution of our measurements. This is de-
termined from the size of our observed Dirac point in the momentum space images
as illustrated in Fig. 5.5 (this also effectively captures the energy resolution). The
simulated distribution is shown in Fig. 5.6c, together with the experimental distri-
bution in Fig. 5.6d. In Fig. 5.6d, two key experimental observations arise from
the matrix element effect; a left-right asymmetry in the Brillouin zone due to the p-
polarized probe XUV light and a partial suppression of intensity around each zone
corner due to the k-dependence of the probe matrix element. Originally modelled
by Shirley et al. [78], a simple interference between two photoelectrons emitted
from two chemically equivalent sublattices is known to suppress part of π-band
distributions of graphene around the Brillouin zone corners, leading to a strong mo-
mentum anisotropy known as “dark corridors” [79]. Although dark corridors have
been previously seen several times in ARPES for graphene [80–82], it was Gierz
et al. [79] who extensively investigated the effects of dark corridors with chang-
ing light polarizations and photon energies. While our present tight-binding model
predicts zero intensity at these dark corridors along the Γ-K directions around the
six K points for hνXUV = 30 eV, in reality the observed dark corridors are not as
pronounced as expected, especially for K1, K4, K5, and K6. Gierz et al. at-
tribute these residual signals to AB sublattice symmetry breaking due to spin-orbit
coupling [79], which may be weak in graphene [169].

We also quantitatively compare the experiment and theory by plotting normal-
ized photoemission intensity vs. angle θ around K. Only the result of K2 is shown
in Fig. 5.6b. Overall, the experiment is in good agreement with the simulation
for K2, and also for K3. Somewhat worse agreement with the simulation is seen
for the rest of the valleys, K1, K4, K5 and K6, when phtoelectron final-state mo-
menta are further away from the light polarization vector. For these valleys, the dark
corridor positions are instead perpendicular to the ΓK with our 30-eV photon and
the TB approximation with the single-plane wave final state does not explain our
data. Multiple plane-wave basis or different final state assumption may be needed
to improve the calculation as seen from the work by Gierz et al. [79].
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Figure 5.5: Momentum resolution applied to tight-binding (TB) simulation.
Photoelectron momentum distribution nearE−EF = 0 eV for a) experiment (Expt)
and b) tight-binding model (TB). The vertical (red) and horizontal (blue) lines going
through the center of the images are shown as the dashed lines for experiment and
a solid line for TB. Comparison of c) the horizontal (blue) and d) the vertical (red)
lineouts between experiment and TB.
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Figure 5.6: Comparison between experiment (Expt) and the tight-binding (TB)
model for the valence band. a) Schematic of a photoemission process in graphene
Dirac cone illustrating that a probe pulse (p-polarized 30 eV) ejects electrons from
energy E −EF = −1.2 eV to the continuum. b) Photoemission intensity vs. angle
θ around K2, constructed via integrating the data in c and d in an ROI referenced to
the center of K2 while the images are rotated clockwise by θ starting from the dark
corridor position indicated by the green line in c. c) Experimental and d) simulated
momentum distribution of valence band electrons (E−EF = −1.2 eV) in the whole
Brillouin zone.

5.3.2 Photoexcited conduction-band pseudospin distribution
We consider a pump-probe measurement at time zero where a linearly polar-

ized 2.4-eV pump pulse takes electrons to hνpump/2 = +1.2 eV and a probe pulse
simultaneously tracks those photoexcited electrons by a photoemission process as
illustrated in Fig. 5.7a. The momentum-space distributions of these initially ex-
cited photoelectrons can be modeled similarily to the ground-state photoelectron
distributions in Eq. 5.40,

It0(k∥) ∝
∫ 1.2 eV

1.05 eV
dε
[
δ(ε− ETB(k∥))×

|Mc,v
pump(k∥)|2 × |Mc

probe(k∥,kz)|2
]
∗ h(k∥) ,

(5.41)

with Mc,v
pump(k∥) denoting the optical matrix element between the valence (v) and

conduction (c) band, given by Eq. 5.39. The simulated distributions for y- and
x-polarized excitation are shown in Fig. 5.7b and 5.7c, together with the corre-
sponding experimental distributions in Fig. 5.7d and 5.7e measured with the exci-
tation fluence 45 µJ/cm2. The angular distributions are now additionally affected by
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the k-dependent optical matrix element [1], imposing the nodes (gray dotted lines)
parallel to the pump polarization directions as seen in panel d and e. The photoe-
mission matrix element effects are also clearly seen in the images as expected, a
left-right asymmetry and the p-polarized probe XUV light.

For quantitative comparison, normalized photoelectron intensities vs. θ around
K3 for y- and x-excitation are plotted in Fig. 5.7f and g respectively. We also
show a similar comparison for K2 in Fig. 6.7. Similar to the ground state result in
Fig. 5.6, remarkable agreement is found for K2 and K3, but larger discrepencies
are observed for K1, K4, K5 and K6. Such inconsistencies are likely due to
the reduced accuracy of modeling the photoemission matrix element (not pump
matrix element) with only the single plane wave for the final state since we observe
similar discrepencies for the ground states. Note that the pump matrix element
here does not take any scattering processes into account. For K2 and K3, such
excellent quantitative agreement with tight-binding theory indicates that these intial
pseudospin polarized electrons have undergone minimal scattering events in our
experiment.
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Figure 5.7: Comparison between experiment (Expt) and the tight-binding (TB)
model for the conduction band. a) Schematic of a time-resolved photoemission
process on graphene Dirac cone. A linearly polarized 2.4-eV pump pulse excites
electrons to E − EF = 1.2 eV and a 30-eV p-polarized probe pulse ejects them to
the continuum. The simulated momentum-space distributions of electrons between
1.05 and 1.21 eV at pump-probe delay ∆t = 0 for b) y- and d) x-polarized pump
excitation. The observed momentum-space distributions are shown in panels d and
e. Comparison of photoemission intensity vs. angle θ around K3 between the
experiment and the TB model for f) y- and g) x-polarized pump excitation. The
directions of pump and probe polarizations are indicated by the gray dashed lines
and purple arrow, respectively in the simulated images. The position of θ = 0 is
colored in red, indicated by the solid lines in panels b and c, and the dotted lines in
panels f and g. For better visualization, the optical nodes are not indicated on the
observed images.
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Chapter 6

Ultrafast Pseudospin Relaxation in
Graphene

6.1 Introduction
The gapless, conical band structure of graphene is the origin of many exotic

optical and electronic phenomena that can be harnessed for applications in opto-
electronic devices. The broadband absorption [170] arising from the band linear-
ity makes graphene suitable for optical sensors [171, 172] or photodetectors [173]
in the near-IR to visible range and graphene is now routinely used in technolo-
gies such as saturable absorbers in passively mode-locked lasers [174–180]. The
ultrafast optical response of graphene is due to carrier relaxation mediated by dif-
ferent scattering processes which lead to rapid thermalization of excited electrons.
Electron-electron (e-e) scattering is very efficient in graphene due to the gapless
band structure and high carrier mobility, and also electron-phonon (e-ph) coupling
between high-energy electrons and graphene’s optical phonons is calculated to be
exceptionally large [1]. The microscopic details of excited carrier relaxation in
graphene are thus both of fundamental interest and are important for the design of
graphene-based devices, and have been the subject of a substantial body of previous
work.

Also proposed for use in graphene devices is an additional quantum number
labeling Bloch wave functions in graphene termed lattice pseudospin [181, 182].
The lattice pseudospin ϕ refers to the relative phase of the Bloch wave function
on the two equivalent carbon sublattices A and B in its honeycomb lattice via
ψ = 1√

2

[
ψA ± eiϕψB

]
eik·r. Here the upper sign is for the conduction band, the

lower sign is for the valence band, and k is the crystal momentum. The angle ϕ
also corresponds to the angular position of Bloch states around the K points in
the Brillouin zone, with the pseudospin orientation parallel to the relative crystal
momentum (k−K) in the conduction band and antiparallel in the valence band [3].

Photoexcitation of electrons from the valence to the conduction band creates
pseudospin polarization via the k-dependence (and thus ϕ-dependence) of the op-
tical matrix elements [1]. Theoretical work has predicted that nonthermal electron
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distributions with strong lattice pseudospin polarization, i.e. the excited electrons
of most interest for next-generation graphene-based optoelectronic devices, should
be observable in pump/probe experiments in neutral (i.e. undoped) graphene with
low excitation fluence, with lifetimes of a few tens of femtoseconds [1, 160–162].
Pseudospin dynamics in graphene have been previously studied using polarization
resolved optical spectroscopy [183–189] and also using time- and angle-resolved
photoemission (time-resolved ARPES) [190, 191]. However, this previous work
has been limited in scope. The optical experiments have been performed with suffi-
cient sensitivity to access the low-fluence regime, where e-ph scattering is expected
to be the dominant relaxation mechanism. However these optical measurements
have probed only limited energy ranges of the excited electron distribution, either
at the initial excitation energy in degenerate pump/probe measurements or much
higher or much lower energies in a few cases. Furthermore, the optical observables
involve drastic integrations over the momentum-space electron distributions, and
require a priori assumption of strict pseudospin selection rules for interpretation in
terms of the electron dynamics around the Dirac cone.

Time-resolved ARPES experiments can measure the full excited electron distru-
butions directly in momentum space and do not rely on any assumptions regarding
selection rules. There have been a number of previous time-resolved ARPES stud-
ies on graphene and graphite [37, 38, 40, 190–195], with two studies addressing
pseudospin polarization [190, 191]. However, this previous time-resolved APRES
work has been predominantly conducted at very high excitation fluence in the ∼mJ
/ cm2 regime and/or on either heavily doped graphene or graphite, both of which
have a large density of states (DoS) at the Fermi levelEF . Both non-zero DoS atEF

and strong pumping lead to the dominance of e-e scattering and very rapid thermal-
ization of the electron distribution, and the data have been mostly well-described in
terms of evolving Fermi-Dirac distributions characterized by time-dependent tem-
peratures [37, 191–193, 196].

In this work, we report time-resolved APRES imaging of electrons excited with
2.4 eV (λ = 517 nm) photons in high-quality neutral graphene samples produced
via exfoliation. A series of pump/probe measurements with high dynamic range
and variable pump polarization are enabled by a unique high-performance instru-
ment for time-resolved ARPES incorporating ultrashort extreme ultraviolet (XUV)
pulses at 61 MHz repetition rate [25, 52, 150] with time-of-flight momentum mi-
croscopy [63, 64]. High dynamic range enables us to observe pronounced non-
thermal distributions with strong lattice pseudospin polarization. For energies near
the hνpump/2 = 1.2 eV level populated by the pump pulse, at low excitation flu-
ence the observed photoelectron signals are in remarkably good agreement with
a simple model based on tight-binding theory accounting for the pump and probe
optical matrix elements but with no consideration of e-e or e-ph scattering. In the
full distribution, pseudospin polarization is still visible down to 0.8 eV above the
Dirac point, or multiple optical phonon energies below 1.2 eV, indicating the per-
sistence of lattice pseudospin through multiple optical phonon scatterings. With
increasing excitation fluence we observe that increased e-e scattering leads to more
rapid thermalization and reduced pseudospin polarization, although we do observe
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up-scattered electrons to retain a degree of polarization, as previously predicted by
theory [161]. To our knowledge, this is the first report of excited-state ARPES
measurements in neutral graphene, and also the first to vary the excitation fluence
over a range where e-e scattering vs. e-ph scattering are expected to be compara-
ble [160, 163].

6.2 Experiment

6.2.1 Set-up
Our overall experimental scheme for time-resolved ARPES is summarized in

Fig. 6.1. Visible (hνpump = 2.4 eV) pump pulses with variable polarization and
p-polarized XUV (20 - 30 eV) probe pulses impinge on the sample at 48 degrees.
The pump-probe experiements are driven by a home-built Yb:fiber frequency comb
laser [122] operating at 61.3 MHz repetition rate with a 185-fs IR pulse centered at
1035 nm (more details can be found in Chapter 3). 1 µJ of this IR driver is passively
amplified in an enhancement cavity (a finesse of F > 500) by constructively inter-
fering with intracavity pulses. High harmonic generation in gas (Argon or Krypton)
takes place at the cavity focus, where the peak intensity on the order of 1014W/cm2

is reached (see Chapter 3 and Ref. [52, 150]). The XUV harmonics ranging from
10 to 40 eV are out-coupled by a sapphire Brewster plate. A time-preserving grat-
ing monochromator selects a single harmonic, which is then focused on a sample.
Our cavity-enhanced high harmonic generation (CE-HHG) source and subsequent
beamline are described in Chapter 3 (also see references [52, 150]). Photoelectrons
are collected with a custom time-of-flight momentum microscope similar to that
described by Medjanik et al. [63]. Real-space photoelectron microscopy (PEEM)
images of two graphene samples are shown in Fig. 6.1b and c (see Section 6.2.2
for details on the samples). We select photoelectrons emerging from the graphene
sample using a small aperture in a real-space image plane of the momentum mi-
croscope, and also high-pass filter the energy distribution (EDC) as described in
Chapter 4. The XUV probe beam is 24 × 16 µm2 FWHM on the sample, and the
pump beam size is set to be at least three times as large such that the recorded sam-
ple area is uniformly pumped. All measurements are performed at a base pressure
of ∼ 5× 10−10 Torr and with the sample held at room temperature.

We determine time-zero (delay where pump and probe pulses maximally over-
lap on the sample) and instrument response function (IRF = cross-correlation be-
tween pump and probe) using both the graphene signal itself as shown in the right
panel of Fig. 6.4, and also complementary pump-probe experiments on polycrys-
talline gold (see Chapter 7.6 for more details). The IRF is well-described as a
Gaussian width of ≈ 200 fs FWHM. Here we report measurements with incident
pump fluences between 45 and 207 µJ/cm2. We correct for small time-dependent
surface photovoltage shifts (due to excitation of the silicon substrate) less than 40
meV via observing shifts in the Dirac point (see Chapter 7.5), and overall deter-
mine the position of the Dirac point with an uncertainty of 50 meV (see Chapter
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7.4). From comparing ground state signals to those expected from a Fermi-Dirac
distribution at 300 K, we estimate the energy resolution of these experiments to be
approximately 250 meV FWHM.

Figure 6.1: Experiment overview. a) Linearly polarized pump pulses (green)
promote electrons to 1.2 eV above the Dirac point (ED) and a time-delayed XUV
probe pulse ejects them into the continuum. b) and c) Real space-PEEM images of
two graphene samples. The dashed lines show the region of the hBN support. The
scale bars in the two images are 10 µm.

6.2.2 Samples
Samples studied in this work are neutral monolayer graphene stacked on a buffer

layer of hexagonal boron nitride (hBN) on a silicon (Si) substrate. We repeated our
experiments on several graphene samples and over a range of XUV photon en-
ergies, with the key results reported here reproducing across several samples and
a range of conditions. The main difference observed between different samples
is the background level (noise floor) observed in the photoelectron spectra, with
higher background precluding clear observation of non-thermal distributions in ex-
periments with lower excitation fluence. We present here data recorded from two
samples, denoted as Gr1 and Gr2 in Fig. 6.2. Both samples are prepared by a me-
chanical exfoliation and their fabrication procedures are described below. The main
time-resolved ARPES data is collected using a pump pulse with hνpump = 2.4 eV
and an extreme ultraviolet (XUV) probe pulse with hνprobe = 30 eV for Gr1 and
with hνprobe = 22.8 eV for Gr2 unless otherwise noted. The flake size of Gr1 is ≈
10 µm × 40 µm. The actual flake size of Gr2 is ≈ 20 µm × 30 µm but the usable
area (indicated in yellow in Fig. 6.2d) is ≈ 10 µm × 10 µm due to multiple cracks
inside.
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Figure 6.2: Graphene samples studied in this work. Real space-PEEM images
of a) Gr1 and b) Gr2 measured with hνpump = 4.75 eV. c) is an optical microscope
image of Gr1, and d) is a scanning electron microscope (SEM) image of Gr2. The
blue and gray dashed lines outline graphene and hBN, respectively. For Gr2, we
measure photoelectrons only from the smaller region marked in yellow to avoid
cracks in the large flake. The scale bars in all the images are 10 µm.

6.2.3 Fabrication
Gr1: The Gr1 sample was fabricated by the Kawakami group at Ohio State Uni-
versity, following the similar procedure described previously for WS2 [25]. Mono-
layer graphene flakes are exfoliated from Kish graphite and hexagonal boron ni-
tride (hBN) flakes are exfoliated from hBN purchased from HQ Graphene, each
onto separate SiO2(300 nm)/Si substrates (figures 6.3a and 6.3b). Next, a dry trans-
fer method is used to stack the Gr1/hBN heterostructure. A polydimethylsiloxane
(PDMS) hemisphere is first made on a clean glass slide and then covered by a
thin film of polycarbonate (PC). This PDMS/PC stamp is then used to pick up the
monolayer Gr1 flake from the SiO2/Si substrate (Fig. 6.3c). The pick-up procedure
is to lower the PDMS/PC stamp and heat the sample stage to 70◦ C, and when the
target flake is fully covered by PC film, shut down the heating and slowly detach
the PDMS/PC from the sample stage; the Gr1 flake is picked up by the PDMS/PC
stamp after separation. Then, the PDMS/PC/Gr1 is used to further pick up the bot-
tom hBN flake (∼10-20 nm thickness) by the same procedure (Fig. 6.3d). The
PDMS/PC/Gr1/hBN is then transferred onto a pre-patterned gold-grid-marked Si
substrate with good alignment by heating the sample stage to 170◦ C and slowly
lifting up the PDMS stamp; the PC/Gr1/hBN remains on the Si substrate. The PC
film is then dissolved in chloroform.
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Figure 6.3: Sample fabrication procedure for monolayer graphene (Gr1). Op-
tical microscope images of a) the exfoliated monolayer graphene (Gr) flake, b) the
hBN, c) the Gr picked up on the PDMS/PC stamp, d) the PDMS/PC/Gr with the
picked up bottom hBN flake, and e) the Gr/hBN on the target Si substrate. The blue
dashed line outlines the Gr. Part of the Gr is draped directly onto Si substrate to
prevent sample charging. The scale bars in all the images are 10 µm.

Gr2. The Gr2 sample was fabricated by the Du group at Stony Brook University.
First hBN flakes are exfoliated onto a Si substrate. For graphene exfoliation, we
first spin-coat a SiO2 substrate with a very thin layer of polypropylene carbonate
PPC (∼10nm). The substrate is slightly warmed up to ∼40◦ C, and the Gr2 flake
is exfoliated on top of the PPC using the standard scotch tape method. The PPC
layer greatly enhanced the adhesion of the surface, allowing large graphene flakes
to be exfoliated. The thickness of the PPC layer is sufficiently small that the color
contrast of graphene is similar to that on a bare SiO2 substrate, allowing easy iden-
tification. We next use PDMS to pick up graphene: PDMS is pressed onto the
target graphene flake at ∼45◦ C. Then temperature is increased to ∼60◦ C, at which
point PPC loses its adhesion, and PDMS is slowly separated from the substrate at
60◦ C, to pick up graphene. Finally, to drop the Gr2 flake onto a target hBN flake,
PDMS/Gr2 is pressed down onto hBN at ∼80◦ C. Then the temperature is raised
to ∼140◦ C, at which point we separate PDMS from the hBN flake, with graphene
transferred onto the hBN flake.

6.3 Results

6.3.1 General overview of fluence-dependent dynamics
Fig. 6.4 shows the general overview of electron relaxation dynamics for the

excitation fluence range of 45 - 207 µJ/cm2. The left panels show the full electron
distribution for all electrons above the Dirac point as a function of pump-probe
delay as a false color plot, along with the electron distribution curves (EDC) at
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selected pump/probe delays. For all three fluences, most of the electrons initially
excited to the energy hνpump/2 = +1.2 eV above ED have already scattered out
of their intial distributions at delays even before time zero, where the pump and
probe pulses maximally overlap. The electrons relaxing down to the energy region
≲ 0.8 eV seem to decay very fast on a time scale much shorter than our temporal
resolution of ≈ 200 fs. Despite this limitation in the dynamics, these electrons
seem to have not yet thermalized in the EDC, showing a substantial deviation from
a Fermi-Dirac distribution upon visual inspection. This non-thermal feature is most
prominent for 45 µJ/cm2 and smeared out more for 132 and 237 µJ/cm2. Also
noticeable in the distributions are incresed electron populations by up-scattering
with increasing excitation fluence. In the following, we look into the details of
these non-thermal signatures.

Figure 6.4: General overview of electron relaxation dynamics across a range
of excitation fluence. Left panels show time-dependence of momentum integrated
electron distributions, with data from the unexcited sample at ∆t = −1 ps sub-
tracted, represented as a false color map for a) 45 µJ/cm2, b) 132 µJ/cm2, c) 207
µJ/cm2. Middle panels are electron distribution curves at selective time delays, i.e.
vertical lineouts from the left panels without the negative delay signal subtracted.
The right panels show the integrated signal for all electrons above the Dirac point
(black circles) along with fits (blue curves) with double-exponentials convolved
with a Gaussian IRF (see Chapter 7.6 for more details). The IRF is shown in the
figure as the gray shaded curves.

6.3.2 Non-thermal electron distributions
Fig. 6.5 shows momentum-integrated EDCs on a logarithmic scale for three

different fluences: 45, 132, and 207 µJ/cm2. For comparison, thermal signals ex-
pected from Fermi-Dirac distributions at different temperatures are shown by the
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dashed lines. The thermal signals are constructed via the product of the Fermi
function ⟨n(E)⟩ = (e(E−EF )/kBT + 1)−1 with the DoS and photoemission matrix
elements derived from tight-binding theory, all convolved with a Gaussian of 250
meV FWHM to account for the instrumental energy resolution. The kinks in the
thermal signals at E = EF are due to the zero in the DoS at the Dirac point. At de-
lays (∆t) longer than our IRF width, i.e. delays where the pump and probe pulses
no longer overlap significantly, the spectra are well described with the simulated
thermal signals with temperatures consistent with previous work [192, 196]. Note
that it is expected that the temperature does not scale linearly with the fluence due
to both the non-constant graphene DoS and the onset of saturated absorption in this
fluence regime [179]. For all fluences, the momentum- and energy-integrated sig-
nal for all electrons above the Dirac point is fit well by a biexponential decay with
τ1 ≈ 200 fs and τ2 = 1 − 3 ps depending on fluence, as shown in the right panels
of Fig. 6.4 (more details can be found in Chapter 7.6).

However, near ∆t = 0, significant population is observed above 0.8 eV that
cannot be described by a Fermi-Dirac distribution. The behavior we observe in the
EDC agrees qualitatively with that predicted by Winzer et al. [160], who performed
density-matrix/Bloch equation simulations of electron dynamics in graphene at dif-
ferent excitation fluences. At low fluence, electrons relax by emitting optical phonons
in discrete steps and the EDC shows a plateau behavior with a steep drop-off at
hνpump/2, with few electrons above this initial excitation energy. At higher fluence,
electron-electron scattering is dominant and the distribution is smoother with a tail
extending to higher energies well above hνpump/2. We note that the non-thermal
distributions we observe here on a logarithmic scale, and their very fast relaxation,
are qualitatively different than previous reports using much larger pump fluences in
doped graphene [38, 193, 197].

75



Figure 6.5: Energy distribution curves (EDC, solid lines) at selected time delays for
a) 45 µJ/cm2, b) 132 µJ/cm2, and c) 207 µJ/cm2. Simulated thermal distributions at
different temperatures (dashed) are shown for comparison. The experimental data
are at time delays ∆t = −1 ps in black, ∆t = 0 fs in blue, ∆t = 200 fs in red,
and ∆t = 500 fs in green. The vertical dotted lines in gray represent Dirac points
E − EF = 0 and E − EF = hνpump/2 = 1.2 eV for the direct excitation energy.
The noise floor of the measurement at high energies is seen in the negative delay
data (black curves).

6.3.3 Initial pseudospin polarization
Fig. 6.6 shows the photoelectron momentum distributions for electrons between

1.05 and 1.21 eV above the Dirac point, i.e. within one optical phonon of the
initial excitation at hνpump/2, with the in-plane component of the excitation electric
field polarized in the x and y directions. For this data the excitation fluence is
45 µJ/cm2 and the pump and probe pulses are maximally overlapped (∆t = 0).
Nodes, illustrated by the white dashed lines, are clearly observed along the pump
polarization directions, as expected from the optical matrix element pseudospin
selection rules [1]. Also visible are the so-called dark corridors along the ΓK-
direction and a left-right asymmetry in the images due to the k-dependence of the
photoemission matrix element and the p-polarization of the XUV light [78,79] (see
Chapter 5.2.3 for more detail). Note that for K1 and K4 the dark corridor is not
as prominent and similar behavior of the missing dark corridor is also observed in
photoemission signals from the valence band as shown in Fig. 5.6. In what follows,
we do not include data from the K5 and K6 regions in our analysis due to the low
statistics in these regions.
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Figure 6.6: Polarization-dependent initial pseudospin anisotropy. a) The 3D-
band structure at ∆t = 0. Momentum distributions for electrons between 1.05 and
1.21 eV above the Dirac point at ∆t = 0 are shown for b) y- and c) x-polarized
pump excitation. The excitation fluence is 45 µJ/cm2, and the directions of pump
and probe polarization are indicated by the white and the magenta dotted lines,
respectively. The intensity near the Γ point is an artifact of the detector.

6.3.4 Comparison of nascent pseudospin distributions to tight-
binding theory

In Fig. 6.7 we compare the observed photoelectron distribution recorded at 45
µJ/cm2 excitation fluence to a simple model

It0(k∥) ∝
∫ 1.2 eV

1.05 eV
dε
[
δ(ε− ETB(k∥))×

|Mc,v
pump(k∥)|2 × |Mc

probe(k∥,kz)|2
]
∗ h(k∥) ,

(6.1)

where ETB(k∥) is the band dispersion, Mc,v
pump(k∥) is the optical matrix element

between the valence band (v) and conduction band (c), and Mc
probe(k∥,kz) is the

probe matrix element between the conduction band states and plane wave final
states with wave vector k = k∥ + kz determined by a relation ℏ2|k|2/2me =
hνXUV − W − ε, with W ≈ 5 eV the work function and hνXUV = 30 eV. Both
matrix elements are derived from tight-binding theory [1, 78]. More simulation
details can be found in Chapter 5. The function h(k) used for convolution is a
2D Gaussian of 0.11 Å−1 FWHM, determined from the size of our observed Dirac
point in the momentum space images as shown in Fig. 5.5. This Gaussian width re-
flects the momentum resolution of our measurements,and also effectively captures
the energy resolution. The simulated distributions for y-polarized and x-polarized
light are shown in Fig.6.7b and 6.7d respectively, for the region labeled K2 in Fig.
6.6, alongside zoomed-in images of the momentum-space photoelectron distribu-
tions from the experiment. In Fig. 6.7e and 6.7f we compare theory and experiment
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quantitatively by plotting the intensity vs. angle around K. Remarkable agreement
is seen with only a single overall scaling parameter applied to the theoretical curves
to match with the experiment, indicating that these electrons have undergone mini-
mal scattering processes that alter their pseudospin polarization. Similar results are
observed for K3 as shown in Fig. 5.7f and g.

Figure 6.7: Comparison to tight-binding (TB) theory for K2. a) and c) K2
Momentum distribution spectra for electrons from 1.05 to 1.21 eV above the Dirac
point for ∆t = 0 for y- and x-polarized excitation, respectively. b) and d) Photoe-
mission momentum maps predicted by the TB model according to Eq. 6.1. Inset
in panel d is Eq. 6.1 without the pump matrix element illustrating the so-called
“dark corridor” and how the signals would look in the absence of pseudospin po-
larization. Comparison of angle-resolved intensities between the TB model and the
experiment for e) y-polarization and f) x-polarization. The pump polarization di-
rection is indicated by the white dotted lines in the top panels. The assigned pump
nodes are denoted by the thin magenta lines in the top panels and by magenta dotted
lines in the bottom panels.

Theory/experiment comparisons for K1, K3, and K4 are also presented in Fig.
6.8. For the initial momentum distributions across the full Brillouin zone, see Fig.
5.7. In Fig. 6.8 worse agreement with the simple tight-binding model is observed,
mainly because the “dark corridor” due to the probe matrix element is not as promi-
nent in the experiment as it is in theory. Similar behavior of the missing dark cor-
ridor for K1 and K4 is also observed in photoemission signals from the valence
band in Fig. 5.6, indicating that our model based on tight-binding wavefunctions
for graphene and a single-plane wave final state does not work as well for these
valleys when the photoelectron final-state momenta are further away from the light
polarization vector. Subtleties of modeling the dark corridor have been previously
discussed by Gierz et al. [79].
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Figure 6.8: Comparison to tight-binding (TB) theory for K1, K3, and K4. a)
- d) K1. e) - h) K3. i) - l)K4. Polarization directions are indicated by the white
dashed lines. Experimental data is in panels a, c, e, g, i, and k and theory is in
panels b, d, f, h, i, and l.

6.3.5 Pseudospin relaxation
To investigate the dynamics of the momentum anisotropy we performed mea-

surements with pump polarization alternating between x and y directions. The de-
tailed data analysis can be found in Chapter 7.7. Fig. 6.9b shows the photoelectron
signals vs. pump-probe delay, recorded in selected regions of interest (ROI) ori-
ented 90 degrees to the nodes created by y-polarized pump pulses. An example
ROI for K2 is shown in Fig. 6.9a. ROI transient signals with x-polarized and
y-polarized pump pulses are labelled Nx and Ny respectively. Figure 6.9c shows
their difference ∆N = Ny −Nx. Using the same ROI while alternating the excita-
tion polarization between x and y each pump/probe scan ensures that both datasets
share the same probe matrix element and also any systematics due to detector re-
sponse inhomogeneity, as shown in Fig. 7.10, enabling careful comparison of the
intensities within the ROI. The ROI signals are integrated over all energies of the
non-thermal distribution, i.e. 0.8 eV and above based on Fig. 6.5, and the shaded
gray Gaussian is the temporal IRF. As seen in Fig. 6.9b and 6.9c, both the excited
population (Nx or Ny) and the anisotropy ∆N closely follow the 200 fs instrument
response, indicating very fast relaxation.

Although we cannot recover anisotropy relaxation times from the pump/probe
traces, significant information about the dynamics comes from analyzing the en-
ergy dependence of the anisotropy. Since electrons are initially promoted to energy
1.2 eV above the Dirac point by the pump pulse, electrons observed away from
this energy get there via either e-e or e-ph scattering. Fig. 6.9d shows the energy
dependence of the normalized anisotropy A ≡ (Ny − Nx)/(Nx + Ny) at ∆t = 0
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for different excitation fluences. The maximum anisotropy is always observed at
the initial excitation energy corresponding to the gray energy bin of Fig. 6.9d, and
reduced anistoropy is observed at all other energies populated by scattering. The
energy binning of 160 meV is chosen to correspond to the lowest optical phonon
energy in graphene [40, 198] such that the points in Fig. 6.9 are spaced by approx-
imately one optical phonon energy. With smaller binning the overall shape of the
curve remains the same as shown in Fig. 7.12, but the statistical error is larger due
to the reduced electron counts in each bin. As predicted by theory, at low fluence
where e-ph coupling is the main relaxation mechanism, relaxation of the pseudospin
polarization via e-ph interactions is very efficient [161]. The low fluence data in Fig.
6.9d show that the observed momentum anisotropy of the electrons approximately
halves for each optical phonon emitted.

In contrast, e-e scattering is expected to better preserve the momentum anisotropy
due to pseudospin dependence of the e-e interaction V ∝ 1 + ei(ϕf−ϕi), which fa-
vors collinear scattering ϕf = ϕi [1, 161]. At higher fluences, where e-e scattering
dominates, we do observe that the anisotropy of relaxed electrons is comparable to
what we observe at 1.2 eV, however we also observe that the anisotropy is over-
all reduced with increasing fluence as shown in Fig. 6.9c, indicating significant
non-collinear scattering [160,187,191]. The same degree of anisotropy is observed
for electrons at energies above 1.2 eV, which appear with significant population
for our two higher fluences. These electrons are expected to be upscattered only
via e-e scattering since the initial optical phonon population at room temperature is
small [160].
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Figure 6.9: Pseudospin Relaxation. a) ROI illustration for K2. Data are recorded
with y-polarized (left) and x-polarized (right) pump pulse. Data from similar ROIs
in all the valleys are combined to produce the transient signalsNy andNx integrated
over all energies > 0.8 eV. b Ny (blue) and Nx (red) vs. pump-probe delay. c) The
difference ∆N = Ny−Nx (black) and the IRF (shaded gray). Both the populations
and the anisotropy track the IRF, indicating relaxation much faster than the 200-
fs IRF. d Normalized anisotropy A vs. energy for different fluences. At higher
fluences anisotropy is overall reduced but persists through more scattering events.
More details in text.
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Chapter 7

Graphene Data Calibration

As important as technical optimizations are, data analysis is also an essential
task for the instrumentation of time-resolved APRES. This becomes increasingly
important as most high-performance time-resolved APRES systems have now inte-
grated time of flight momentum microscopy (ToF-MM) for photoelectron detection
to mitigate data-rate problems. With the provision of simultaneous detection of the
full (kx, ky, E) photoelectron distribution with 2π collection efficiency, ToF-MM
combined with a high repetition rate HHG source can record time-resolved APRES
measurements at multiple megabytes per second. This capability creates opportu-
nites to explore other experimental parameters such as a range of pump fluence,
pump polarization, pump/probe photon energies, or spin polarizations, which is of-
ten needed to extract meaningful physics. However, the resulting data at the end of
measurments are an enormously large volume of multidimensional datasets, posing
an immediate challenge for data processing.

When working with such large data, a challenge usually arises from navigating
large, multidimensional space via a series of systematic procedures. Desired out-
comes must be ultimately reduced to manageable 1D/2D arrays for practical com-
parison. By doing so, systematic errors can possibly occur and a critical task is,
therefore, to keep the data consistency by applying the same systematic procedures.
This way the outcomes are unbiased and fair comparisons can be made between
different experimental parameters. This being our goal, we check our systematics
throughout the work and validate our analysis procedures as best we can. This chap-
ter provides the details of important systematic checks for graphene data reported
in Chapter 6 along with data analysis procedures. For all of the data presented in
this work, neither symmetrization nor noise-filtering have been applied, only nor-
malization, shear correction, and background subtraction have been applied.

7.1 Momentum and energy calibration
Raw ARPES data collected by ToF-MM are 3D-array boxels, N(x, y, E) where

x and y are given in pixels and E in time of flight. To completely access the band
structure E(kx, ky, E) of a material, momentum and energy coordinates must be
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calibrated at the plane of the electron detector. A common procedure for energy cal-
ibration in electron microscopes is to correlate the change of sample potential with
the shift of an electron spectrum [199]. Another option is to simply use the known
distance between two peaks, i.e spin-orbit splitting, if present. Monolayer graphene
we study here does not display such spectral features and we determine the scaling
of energy by scanning sample voltage in a controlled manner. We perform a control
experiment on the same graphene sample used for the tr-ARPES measurements us-
ing the identical microscope setup. While scanning sample voltage across a range
of ≈ 2.5 V (large enough to cover the whole energy axis), we record the shift of
an energy point, such as near the onset of the Fermi edge, in the observed electron
spectrum. We usually choose a tracking point sufficiently far from our high-pass
filter (HPF) cut-off so that it remains uncut by the HPF throughout the measure-
ment. We then fit the applied sample voltages against the corresponding ToF slices
to get a scaling factor in eV per ToF slice.

The momentum axes can be calibrated based on the Brillouin zone size of a
material. For graphene the first Brillouin zone is a hexagon, the sides of which are
all equal to 4π/(3a) = 1.7028 Å

−1
with the lattice constant a = 2.46 Å (see Fig.

5.1). To convert x and y coordinates of raw data to Å
−1

, a momentum distribution at
the Fermi energy is used to obtain an average length of all hexagon sides in pixels.

7.2 Data normalization

Figure 7.1: Drift of total electron counts during a typical tr-ARPES measure-
ment.

Fig. 7.1 shows the drift of total electron counts during a typical time-resolved
APRES measurement. In general, the electron signal can fluctuate in time due to
systematic drifts such as a change in the XUV beam pointing to a µm-scale sample,
a change in the XUV harmonic flux due to a fluctuation of driver laser power or
a HHG gas medium, or other perturbation. In our case, where the XUV beam is
24 × 16 µm2 FWHM, the fluctuation is mainly due to the difficulty in pointing the
small XUV beam to a 10-µm scale graphene sample. To correct such drift, each
raw data cube at a given pump-probe delay t, Nt(kx, ky, E), is normalized by the
total electron count in that delay so that all data cubes have the same valence band
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signal:

St =
Nt(kx, ky, E)∫ ∫ ∫

Nt(kx, ky, E)dEdkxdky
(7.1)

This normalization scheme is expected to correct any systematic drift since the
fluctuation is, in principle, captured in the drift of the total counts.

7.3 Correction of image shear
Fig. 7.2 describes the standard procedure for correcting image shear in our

ARPES data. In panel a, the energy-momentum dispersion at K1 valley is shown
for a cut normal to the ΓK-direction together with momentum distribution curves
at different energies. In the figure two π-bands disperse asymmetrically downward
in energy, and the Dirac point (E − EF = 0 eV) is not aligned with the mid-points
(red dots on MDC) between two bands. In an ideal case, the Dirac point must
go through the center of a Dirac cone at all energies. To correct such distortion
in our time-resolved ARPES data, a simple affine transformation, called an image
translation, is employed with a bilinear interpolation. The translation operation
shifts each point (x, y) of the image given at a zk energy slice, Szk(x, y), by a
translation vector Tzk = [Tx Ty]zk . To determine the x- and y-components of the
translation vector, the center coordinates (xc, yc)zk of the images are fitted with a
line in x and y separately to get the slopes dx/dz and dy/dz. The respective vector
components are Tx,zk = dx/dz(zk − z0) and Ty,zk = dy/dz(zk − z0) where EF slice
is used as a reference pivot point z0. The same translation operators are applied to
all other delays for a given Dirac cone. This procedure is done for all six Dirac
cones independently.

It is optimal to determine the slopes from as large an energy range as possible
either using the conduction or valence band since it yields a longer leverage arm. A
searching algorithm for finding the center points becomes much easier to automate
if one uses strong valence band images, but this is not always the case when we
use an aggressive high pass-filter (HPF) setup to mitigate the detector saturation.
In some cases, we only pass several hundred meV below EF , not leaving enough
energy range in the valence band for the determination of the slopes. We there-
fore use two different procedures to find the center points depending on the HPF
setup. For aggressive HPF setups, the procedure is based on the conduction band as
demonstrated in Fig. 7.3. The measurements are usually performed with pump po-
larization alternating between x and y directions to ensure that for a given ROI each
pump-probe scan shares the same probe matrix element and detector background
(see Section 7.7). Since time-resolved conduction-band signals are several orders
of magnitude smaller than valence-band signals, we combine x- and y-excitation
datasets near ∆t ≈ 0 to enhance the photoemission intensity. For the energy range
near the Dirac point, such as e3, the images are circular disks and their center points
are determined from their centroid positions. For the higher energy range, labeled
e1 and e2, where trigonal image distortion is observed, we manually find the center
points by extrapolating two optical nodes (dotted lines) to the center of the images
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where the Dirac point is expected to be. According to the pseudospin optical se-
lection rule [1], the nodes are generated parallel to the field directions of x- and
y-excitations traversing the Dirac point (see Figs. 5.7, 6.7, and 6.8 ).

For the HPF setup passing> 1 eV below EF or for low fluence data that usually
have poorer statistics in the conduction band, we use the valence-band images to
find the center points as shown in Fig. 7.2. Near the vicinity of the Dirac point (E−
EF ≲ 0.4 eV), the Dirac cones are still circular, but usually collapsed into blurred
disks due to our energy and momentum resolutions (see Section 7.4). Also, the
dark corridors [79], partial suppression of angular intensity due to the probe matrix
element, are not well resolved (the details of dark corridors can be found in Chapter
5.2.3and 5.3.1). We thus calculate the centroid positions of those disks for E −
EF ≲ 0.4 eV. Beyond E − EF > 0.4 eV, we make horizontal and vertical lineouts
through the void region of the images near the middle. The center coordinates are
determined from equidistant points, indicated by red solid lines in panel b, between
two peaks in the lineouts. In the presence of the dark corridor, the lineouts still
show appreciable peaks because their intensities are never completely suppressed
to zero in our setup as shown in Fig. 5.6. We check the accuracy of this procedure
by applying it to the shear absent, tight-binding simulated data according to Eq.
5.40. The center point found by this lineout procedure only differs by ≈ 0.028 Å−1

(1 pixel in this data) relative to the Dirac point.
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Figure 7.2: Image shear correction based on the ground states. a) The Bril-
louin zone and energy-momentum dispersion along a cut (blue line) through K1
valley parallel to the ΓK-direction. Momentum distribution curves (white curves)
at selective energies are plotted together with the mid-points (red dots) between
two peaks, illustrating that a Dirac point shifts with energy due to image shear.
b) Demonstration of finding a Dirac point by a lineout procedure. A theoretical
Dirac point, which must go through the center of momentum-space images at all
energies (here near −1.2 eV shown), is determined from the mid-points (red lines)
between two peaks in horizontal and vertical lineouts (white curves) of the images.
c) Checking the accuracy of the lineout procedure on the shear absent data obtained
by a tight binding model according to Eq. 5.40. The center of the simulated image
determined by the same lineout procedure in panel b is where the two mid-points
intersect, deviating from a true Dirac point (magenta) of the simulated data by ≈
0.027 Å

−1
, corresponding to 1 pixel in this data.
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Figure 7.3: Image shear correction based on the excited states. a) Extraction of
Dirac cone centers (xi, yi) by extrapolating two optical nodes, which are expected to
pass through a Dirac point according to an optical selection rule [1]. b) Denotation
of K2 valley processed. c) Determination of slopes in x and y by line fit. The x-
and y-coordinates of the center points are fitted with a line to obtain slopes dx/de
and dy/de which are used to determine the translation vectors for image translation
in order to align the center points with energy.

7.4 EF calibration
In neutral graphene, the position of the Fermi level (EF ) coincides with a Dirac

point (ED), where the two vertices of the conduction and valence band meet with
vanishing density of states. However, finite energy and momentum resolutions in
our experiments typically smear ED in momentum space, showing it as a blurred
disk. This usually makes it difficult to determine where the two bands exactly in-
tersect. One way of determining ED is to look for an energy corresponding to
zero density of states on electron distribution curves (EDCs). Since pump excita-
tion ℏνpump takes electrons from energy −ℏνpump/2 to +ℏνpump/2, electron depletion
together with electron population shapes EDCs symmetrically about ED and at dif-
ferent pump-probe delays EDCs cross at this mid-point. In our case, we do not
observe electron depletion on EDCs making it difficult to determine ED this way.
Another way of determining ED is by fitting EDCs with a Fermi-Dirac function but
in some cases our HPF cuts the valence band substantially, reducing the accuracy
of actual ED determination. In this work we find an energy slice corresponding to
the smallest waist from MDCs and designate ED (equivalently EF ) at that slice.

Fig. 7.4 illustrates the overall procedure of finding ED. The π-band dispersion
of K1 valley along the ΓK-direction (cut shown in panel a) is shown in panel b and
MDCs are shown in panel c. We fit a range of MDCs plotted just near ED with a
single Gaussian function (energy window shown in the magenta line in panel b).
Resultant Gaussian width σMDC vs. energy is plotted in panel d and the minimum
in energy is called ED here.

As a check, ED is also determined from a crossing point of two downward
dispersing bands as shown in panel c. MDCs are selected from a larger energy
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window, indicated by the white line in panel b, to ensure that two bands are clearly
separated and fitted with a double Gaussian function. Two band maxima for the left
and right branches are fitted with a line separately. Where the two lines intersect
is 45 meV higher than ED determined by the skinniest MDC linewidth described
in panel d. We calibrate EF by the skinniest MDC linewidth in this work and use
this deviation as an uncertainity in the position of ED. This procedure is inevitable
in some cases where we have to implement an aggressive high-pass filter setup
to suppress the valence band signals for less detector saturation. This only leaves
less than 1 eV below the EF , in which case two branches do not clearly disperse
downward in energy.

Fig. 7.5 compares the positions of EF for different Dirac cones estimated from
the skinniest MDC linewidth. For a better visualization, each curve is offset by
a constant. The positions of EF in these Dirac cones coincide with each other
within the 1-σ errorbar of the fit. The minimum value in σMDC at EF is ≈ 0.04
Å

−1
, reflecting the overall resolution of our measurement, contributed from both

momentum and energy resolutions.

Figure 7.4: Comparison of two calibration methods for the Fermi level (EF )
in graphene experiments. a) Demonstration of the momentum cut and the kx
integration range for b) the ARPES spectrum of K1 valley. c) Extraction of the
band crossing point at EF by fitting the two band positions in the MDCs. The
MDCs in gray diamonds are horizontal lineouts from the energy window indicated
by the white line in b). The fits by a double-Gaussian function are indicated by
solid lines. d) EF calibration by the skinniest MDC linewidth. A small range of
MDCs near EF (the magenta window in b) are fitted with a single Gaussian to
determine the linewidth σMDC . The values of σMDC are fitted with a polynomial to
find a minimum in energy to determine EF . The shaded area in light purple is 1-σ
errorbar associated with the fit.
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Figure 7.5: CheckingEF of other Dirac cones. The positions ofEF are estimated
from the calibration by the skinniest MDC linewidth described in Fig. 7.4. Each
curve is offset by a constant, 0.015 Å

−1 × (valley index - 1), for a better visualiza-
tion.

7.5 Surface photovoltage shift
When light illuminates on a semiconductor, electrons and holes move according

to the induced-field gradient in the space charge region on the surface. This changes
the surface potential, which tends to flatten the intrinsic band bending of a semi-
conductor. Such light-induced potential difference is called surface photovoltage
(SPV) [88]. SPV is found to increase logarithmically with laser intensity [89, 90].
For pump-probe experiments, where a probe pulse is delayed with respect to a pump
pulse, SPV changes with pump-probe delay, complicating the dynamics of interest
under consideration. If photoemission is employed as a probe, as in time-resolved
ARPES, this transient effect adds another level of complexity to measurements.
The added potential is thought as bias in the material’s workfunction (a difference
between the vacuum and Fermi level), which shifts the photoelectron spectrum as a
function of time [91–95]. This SPV-related shift may be difficult to separate from
a shift due to pump-induced space charges via multi-photon photoionization pro-
cess [48, 49].

To check SPV shift in our data, the position of EF , calibrated by the skinniest
MDC linewidth in Section 7.4, is plotted as a function of pump-probe delays in Fig.
7.6. In Fig. 7.6, the SPV effect is most pronounced near ∆t ≈ 0 fs and becomes less
noticeable for longer delays. The maximum shift of ≈ +40 meV (2.5 ToF slices) is
estimated between ± 500 and 0 fs. The lesser shift of ≈ +20 meV (1 ToF slice) is
observed beyond 600 fs. In our case, where we use a 2.4-eV pump pulse, SPV is
due to the Si substrate underneath the graphene sample, not due to hBN buffer layer
(bandgap of ≈ 6 eV).
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Figure 7.6: Surface photovoltage shift in the Fermi energy of neutral graphene
measured as a function of pump-probe delay. The Fermi energy (EF ) is esti-
mated at all time delays using the calibration method described in Fig. 7.4d to
measure the transient shift. For neutral graphene stacked on a buffer layer of hBN
on a Si substrate (see Chapter 6.2.2 ), the EF shift is from excitation in the Si sub-
strate underneath graphene. The position of EF in the y-axis is referenced to the
last delay point.

7.6 Extraction of instrument response function and
time zero

Fig. 7.7 demonstrates the extraction of the instrument response function and
time zero from graphene experiments. Our overall time-resolved ARPES scheme
is summarized in panel a, where visible pump pulses (hν = 2.4 eV) with x- or
y-polarization excite electrons to 1.2 eV above the Dirac point and time-delayed
XUV (20 - 30 eV) probe pulses with p-polarization eject them to the continuum.
Panel c shows the electron distribution for all electrons above the Dirac point vs. a
pump-probe delay, recorded from combining ROI integrated signals from K1 - K4
valleys (ROIs shown in panel b). The transient signal integrated for all electrons
above the Dirac point is shown in panel d. We determine the instrument response
function (IRF = cross-correlation between pump and probe) and time zero by fitting
this transient signal with a bi-exponential decay convolved with a Gaussian IRF. In
the fit, time zero and the Gaussian width are set as free fit parameters. The bi-
exponential decay is motivated by previous work on doped graphene [37, 192] and
this method of extracting the IRF is analogous to other efforts that have fit the fast
rising edge of the signals with an error function [191]. The fit gives a Gaussian
width of 196 fs at FWHM.
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Figure 7.7: Extraction of instrument response function (IRF) and time zero
(t0) from graphene experiments. a) Experimental scheme. b) ROI illustration for
momentum integration. An ROI, shown in the yellow dotted box for K1, encloses
the entire momentum distribution of excited electrons in the conduction band. Sim-
ilar ROIs are applied to K2 to K4. c) Time dependence of momentum-integrated
electron distribution produced from combining K1 - K4, represented as a false
color map. d) Transient signal integrated all above the Dirac point and its fit. The
energy integration range is indicated by the white line in panel c and the fit is a
convolution of a bi-exponential decay and Gaussian IRF (purple shaded area).

We further verify this procedure for determining the IRF and time zero by re-
peating pump-probe measurements on polycrystalline gold (Au). We deposit a thin
Au film in close proximity to a graphene sample, following a similar procedure for
Gr2 in Chapter 6.2.3). Both samples, supported on the same Si substrate, sit nearly
on the equivalent sample plane such that any path length difference does not need
to be accounted for. Fig. 7.8 compares the IRF and time zeros from these two
measurements. For graphene shown in the right panels, time zero is determined
by fitting the transient signal of all excited states, similar to Fig. 7.7. For Au in
the left panels, a Gaussian response is observed for the highest energy electrons,the
lifetime of which is typically short on the order of 10 fs [200,201]. Excellent agree-
ment is found between the two methods, validating our method of extracting the
two temporal parameters by fitting graphene’s total transient signal. Nevertheless,
ths 230-fs IRF does not agree with a196-fs IRF reported in Fig. 7.7. Note that these
two measurements are conducted one and a half years apart, during which time the
laser pulse duration may have changed due to changes in the Yb:fiber oscillator or
nonlinear broadening after the Jin amp (see Chapter 3).
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Figure 7.8: Checking the extraction of temporal parameters on polycrystalline
gold (Au). Complimentary pump-probe experiments are performed on a graphene
flake and a thin Au film (≈ 10 - 20 nm) deposited close to graphene on the same
Si substrate. Time-dependent photoelectron distributions represented as a false col-
ormap for a) Au and b) graphene. Extraction of time zero (t0) and IRF from pump-
probe measurments for c) Au and d) graphene. For graphene, temporal parameters
are determined by fitting the total integrated signal of all excited electrons above
the Dirac point with a model described in Fig. 7.7. For Au, where high-energy
electrons are expected to have a short lifetime of ≈ 10 fs, the transient signal is
fitted with a single Gaussian response function. The energy integration windows
are indicated by the white arrows in panels a and b.

We also check the drift of time zero in our measurement as shown in Fig. 7.9.
This measurement contains a total of 77 scans collected over the integration time
of ≈ 3 hours. The data is subdivided into blocks of 10 scans and time-zero values
from 8 blocks are determined by a similar procedure in Fig. 7.7. We observe the
drift of 20 fs at most, much less than our 200-fs time resolution. The main goal
of this work is to study nonthermal distributions of pseudospin-polarized electrons
(more details found in Chapter 6), following optical excitation. While the dynamics
of this momentum anisotropy is typically on the order of ≈ 50 - 100 fs [1,161,186],
we cannot recover this fast relaxation time with our 200-fs IRF and instead put an
emphasis on the energy dependence of momentum anisotropy near time zero (see
Chapter 6.3.5). For this purpose, a 20-fs drift may not be an issue.
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Figure 7.9: Checking time-zero drift during a tr-ARPES measurement. A
total of 77 scans is divided into subsets of 10 scans and the values of time zero (t0)
are extracted by the similar procedure described in Fig. 7.7. The errorbar is 1-σ
uncertainty of the fit. The zero in the y-axis refers to the global t0 from a combined
77 scans.

7.7 Metrics for extracting pseudospin anisotropy: 2-
box vs. 1-box analysis

This section details two metrics for measuring momentum-space pseudospin
anisotropy. This is the main subject in Chapter 6, where we have initially observed
strong momentum-space pseudospin polarization of electrons around the K points
excited by x- and y-polarized pump pulses (see Fig.6.6). The nodes are clearly
visible along the pump field directions as expected from the optical pseudospin
selection rules [1]. The goal is to study how these initial pseudospin-polarized elec-
trons relax both in time and energy across a range of excitation fluence based on a
metric that measures the magnitude of the anisotropy. However, it may be difficult
to separate this pure optical matrix element effect from the probe matrix element
effect during a photoemission measurement since the probe matrix element also
plays an important role in the angular distribution [78, 79] (see Chapter 5.2.3 for
more details). Thus, a successful metric must be able to subtract this momentum
anisotropy induced by k-dependent probe matrix element in addition to accounting
for any residual anisotropy from detector inhomogeneity. In the following, we dis-
cuss two paradigms of measuring the pseudospin anisotropy based on integration in
different regions of interest.

7.7.1 2-box analysis
Fig. 7.10 describes the extraction of momentum anisotropy by 2-box analysis.

Example ROIs are shown in the left of panel a for K2 valley for energy 1.05 - 1.21
eV near ∆t = 0 fs excited by y-polarized pump pulses. For comparison, the un-
pumped momentum distribution at ∆t = -1 ps (-1 ps prior to pump excitation) is
shown in the right of panel a with similar ROIs. For 2-box analysis, two selected
regions of interest (ROI) are oriented perpendicular to each other around the Dirac
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point, one enclosing a pure optical node (not dark corridor) and the other oriented
90◦ to the node, usually where the signal is intense. In panel a, these two compo-
nents are labeled v and h, and respective net integrated signals over these ROIs are
labeled N sub

h and N sub
v with the following definition,

N sub
ROI(e, t) =

∫
ROI

dk∥ St(k∥, e)− Stbg(k∥, e) (7.2)

where ROI = h or v, and tbg refers to a pump-probe delay before the pump arrival,
taken as ∆t = -1 ps. Here, N sub

ROI(e, t) are transient signals as a function of energy e
and pump-probe delay t.

We now define the background-subtracted momentum anisotropy as

A(e, t) = N sub
h (e, t)−N sub

v (e, t). (7.3)

We also define the normalized anisotropy for a particular pump-probe delay tj as

A(E; tj) = ±N
sub
h (E; tj)−N sub

v (E; tj)

N sub
h (E; tj) +N sub

v (E; tj)
(7.4)

where E represents the binned energy axis and the ± sign ensures A > 0 with +
denoting x- and − denoting y-polarization. Note that A(E; tj) is normalized by
the sum to account for a fluctuation of the counts due to the source drift. Eq. 7.4
represents the energy spectrum of the anisotropy for an arbitrary delay tj , bounded
between 0≤ A(E; tj) ≤ 1, where the maximum of 1 describes highly anisotropic
pseudospin alignment and the minimum of 0 describes complete isotropization.

Fig. 7.10d shows the energy dependence of momentum anisotropy near ∆t = 0
with the energy binning of 160 meV. The maximum anisotropy is observed at the
initial excitation hνpump/2 indicated by the gray shaded region in Fig. 7.10d and
it washes out by scattering into other energies. For comparison, the momentum
anisotropy at -1 ps is also plotted in the magenta curve together with the anisotropy
of the probe matrix element in the green curve, following the similar analysis in
Eq. 7.4. Even though pump and probe pulses don’t overlap at -1 ps, some residual
aniostropy is observed in the background due to inhomogeneous detection of elec-
trons emitted from outside the graphene flake or the detector inhomogeneity. Also,
k-dependent probe matrix element contributes to the anisotropy, which may not be
easily separated from the pure optical effect in 2-box analysis. Because of these
flaws, we do not proceed with 2-box analysis to study momentum anisotropy.
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Figure 7.10: Extraction of pseudospin anisotropy via 2-box anaysis. a) Left:
illustration of example ROIs on the momentum-space image of K2 valley near ∆ t
= 0 measured with a 2.4-eV pump pulse polarized along y-excitation. Right: same
as the left panel except ∆t = -1 ps, showing that inhomogeneous detector response
can produce a residual anisotropy in background. b) Valleys processed for this
figure. K2 and K3 are combined to produce anisotropy A in panel d. c) Tight-
binding simulated image for K2 valley according to Eq. 5.40. Even without the
pump matrix element, some anisotropy is still expected from the angle dependence
of the probe matrix element. d) The energy spectrum of normalized, background-
subtracted pseudospin anisotropy A according to Eq. 7.4. ∆ t = 0 is indicated by
navy, ∆ t = -1 ps by magenta, and the probe matrix element by green.

7.7.2 1-box analysis
Fig. 7.11 describes the extraction of momentum anisotropy by 1-box analysis.

To carefully extract optically induced momentum anisotropy, transient signals are
recorded in the same ROI oriented either parallel or perpendicular to a node while
pump polarization is alternated between x- and y-directions for each pump-probe
delay. Example ROIs for K2 is shown in panel a for the energy 1.05 - 1.21 eV
near ∆ t = 0, measured by y-polarization in the left and x-polarization in the right.
Corresponding net ROI transient signals are labeled N sub

x and N sub
y , each following

the definition from Eq. 7.2 with ROI = x or y indicating pump polarization instead.
In 1-box analysis, momentum anisotropy is defined as

A(e, t) = N sub
x (e, t)−N sub

y (e, t). (7.5)

With this definition, it is possible to track the dynamics of the anisotropy using
integration for a selected region of interest in energy (see Fig. 6.9b). Normalized
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anisotropy for an arbitrary pump-probe delay tj is defined as

A(E; tj) = ±
N sub

x (E; tj)−N sub
y (E; tj)

N sub
x (E; tj) +N sub

y (E; tj)
. (7.6)

where ROI signals are typically binned by E = 160 meV, corresponding to the
optical phonon energy in graphene [40, 198].

Fig. 7.11c shows the energy dependence of the anisotropy near ∆ t = 0 binned
by 160 meV. Similar to the results obtained by 2-box analysis, the anisotropy is
maximum at the initial excitation, indicated by the gray shaded region, and is re-
duced at all other energies by scattering processes. This metric completely cancels
out the anisotropy from the probe matrix element regardless of the pump excitation.
As shown in the magenta dotted line in Fig. 7.11c, it also effectively subtracts off
the residual anisotropy persistant in the background for 2-box analysis.

We also measured the anisotropy in Eq, 7.6 with smaller energy bins of 80 meV
as shown in Fig. 7.12. The smaller binning does not change the overall shape of the
curve. The statistical errors in those smaller bins are larger due to lower electron
counts.

Figure 7.11: Extraction of pseudospin anisotropy via 1-box anaysis. Example
ROI illustrated on momentum distribution of K2 valley a) near ∆t = 0 and b) at ∆t
= -1 ps. Data are measured with y-polarized (left panels) and x-polarized (right pan-
els) pump pulses. c) Normalized anisotropy near ∆t = 0 processed fromK2 andK3
valleys combined. This 1-box analysis effectively cancels out residual anisotropy
in background.
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Figure 7.12: Anisotropy measured with smaller energy bin. a) Anisotropy
parameter (A) vs. energy with 80 meV bins. a) Anisotropy parameter (A) vs.
energy with 160 meV bins.

7.7.3 Poisson error bars
The error bars on the momentum anisotropy parameters, shown in Fig. 7.10d,

Fig. 7.11c, and Fig. 7.12, are based on Poisson statistics. The validation of the
Poisson error bars in our measurements will follow in the next section. For 2-
box analysis, for example, the background-subtracted normalized anisotropy A in
Eq.7.4 at ∆t = 0 is explicitly written as

A(E; ∆t = 0) = ±(Nh −N0
h)− (Nv −N0

v )

(Nh −N0
h) + (Nv −N0

v )
(7.7)

where Nh and Nv are the photoelectron signals before background subtraction
recorded in the horizontal (h) and vertical (v) ROIs at ∆t = 0, and N0

h and N0
v

are the signals at ∆t = -1 ps when pump and probe pulses no longer overlap (see
Fig. 7.10 for ROI demonstration). Since the quantity of interest A is calculated
from four variables Nh, N0

h , Nv, and N0
v , one can propagate the error via Eq. 7.7,

(
δA

)2
=

(
∂A

∂Nh

)2(
δNh

)2
+

(
∂A

∂N0
h

)2(
δN0

h

)2
+

(
∂A

∂Nv

)2(
δNv

)2
+

(
∂A

∂N0
v

)2(
δN0

v

)2 (7.8)

δA,2box =

√(
δA

)2 (7.9)
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Here, δNh, δN0
h , δNv, and δN0

v are independent errors calculated based on the
Poisson noise, e.g. δNh =

√
Nh. A similar procedure is used to calculate error bars

for 1 box-analysis.

7.7.4 Error analysis
To check the validity of Poisson error bars reported on the normalized momen-

tum anisotropy, we confirm that fluctuations in the measurements are solely due to
Poisson statistics, not due to systematic drifts such as a fluctuation of laser intensity.
For this task, we divide a long accumulated measurement into several subsets and
check if Poisson statisitcs actually represent the fluctuations in these repeated mea-
surements. Fig. 7.13a (same plot as in Fig. 7.10d) shows the anisotropy parameters
at ∆t = 0 processed from a total of 77 scans. In panel b, we test the confidence of
one Poisson errorbar for the energy 1.21 - 1.05 eV, where it has less statisitcs, by
comparing the size of the error bars (blue error bars) derived from Poisson statis-
tics to the standard deviation σA (red error bar) of the data points in 8 subdivided
measurements. It is clear that most of the data points are scattered within the range
of σA without a constant offset nor general trend, confirming that the fluctuations
in these measurements are indeed due to the Poisson noise, not due to systematic
errors.

Figure 7.13: Checking the validity of Poisson error bars for pseudospin
anisotropy. a) Background-subtracted pseudospin anisotropy A from 2-box anal-
ysis presented in Fig. 7.10 and the Poisson errorbars δA,2box according to Eq. 7.9.
b) Comparison of the Poisson error bars vs. the standard deviation of 8 subdivided
measurements for the energy 1.21 - 1.05 eV to check if Poisson statistics actually
capture the fluctuations in the measurements. A total of 77 scans is subdivided into
8 subsets. The error bars in 8 subsets predicted by Poisson statisitics in Eq. 7.9 are
shown in blue and the standard deviation of 8 data points is shown in the red error
bar.
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Appendix A

Upgrades to Stony-Brook Light
Source

A.1 Instability issues in previous 83-MHz oscillator
After a six month-lifetime, the previous 83-MHz oscillator began to underper-

form. Noisy error signals were frequently observed and the laser unmode-locked
itself sometimes, preventing from coupling the frequency comb laser to the en-
hancement cavity for high harmonic generation. One quick metric to help diagnose
the source of such noise can be checking the RF frequency components of the laser
light. In the absence of any noise, only signal expected is at the laser repetition rate
and its harmonics. Fig. A.1 a) shows the RF spectra of the seed light measured
at two different times. Even when the error signal seemed relatively quiet in b),
a nontrivial signal at 8 MHz was observed as shown in the blue trace in a). This
8-MHz signal was persistent even upon different mode-lock states.

When noise was drastically increased in the error signal as in Fig. A.1 c), the
spectrum shown in the red trace of a) was observed. When this happened, the laser
would just not mode-lock even at different operation states, which could be a sign
of the degraded gain fiber. We were confident to conclude that the problem stems
from the oscillator, not from the HHG cavity, so we proceeded to install a new fiber
assembly with a fresh gain fiber.
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Figure A.1: Instability issues in the previous 83-MHz oscillator. a) The RF
spectrum of the oscillator light measured at two different times. The blue trace
was measured when the quiet error signal was observed in b). The red trace was
measured when the noisy error signal was observed in c). The black trace is back-
ground.

A.2 Details on the oscillator fiber assembly

Figure A.2: Layout of the new 61-MHz Yb:fiber oscillator (top) and the length
specification on the fiber assembly (bottom).
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A.3 Cavity dispersion compensation with a grating
pair

The longer fiber and other components of the new 61 MHz oscillator have more
dispersion compared to the previous 83-MHz version. The new EOM (LiNbO3,
45 mm, GVD =291.05 fs2/mm) is 11 time longer than the previous EOM (LiTaO3,
4 mm, GVD =224 fs2/mm). This EOM shortens the rep-rate by 1.22 MHz in free
space but introduces an additional group delay dispersion (GDD) of +1.22×104 fs2

to the oscillator. Additional dispersion from the fiber length change can be cacu-
lated using Ref. [129], where the dispersion parameterD is expressed in ps/nm·km.
The D value of a HI-1060 type fiber (from Corning) found from Ref. [129] is D ≈
-40 ps/nm·km at 1030 nm. The group velocity dispersion β2 can be found from a
relation D = −2πcβ2/λ

2. The additional GDD of +1.78 × 104 fs2 is introduced
to the laser from an extra fiber length of 80 cm. Summing both contributions, the
additional net GDD is GDDextra = +3 × 104 fs2. The positive sign indicates the
GDDextra of the oscillator is normal dispersion. The grating separation needs to be
adjusted in such a way that the amount of GDDextra is cancelled by the anomalous
dispersion of gratings. This method generally leaves the cavity close to zero GDD,
but the spacing needs to be further fine tuned for true net zero GDD. A better way
of achieving net-zero cavity dispersion can be by measuring its actual net GDD in
situ [130] and compensating accordingly. This is described in Chapter 3.2.2.

A.4 Details of Jin-amp components

Components Details
Iso Isolator, SN18037663
Pol In-line polarizer, SN1402771

90/10 90/10 power splitter, SN9047310
Gain nLight Liekki, Yb300-6/125-PM

Pump-diode 3SP Technologies, 1999CHP
DC Pump-diode controller, Thorlabs, LDC200C
TC Temperature controller, Thorlabs, TLD200C

Table A.1: Details of Jin-amp components.
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Appendix B

Optimization of Momentum
Microscopy

B.1 Optimization of high pass filter performance
Fig. B.1 shows the performance of non-optimal high pass filter (HPF) configu-

ration. In this configuration, the two grids are 1 cm apart and the second grid (HPF
grid) is placed 1 cm away from the MCP. We try to optimize this configuration by
applying the retarding voltage on three elements, the two grids and the MCP front.
In Fig. B.1a, the two grids are set to 100 V, the same as the ToF tube voltage, and the
MCP front = 3 V is used as HPF. This scheme shows the sharp cutoff of the energy
momentum dispersion in the bottom right panel, but is generally unwanted mainly
because running the MCP front with a lower voltage can drop electron detection
efficiency. Fig. B.1 b) illustrates ToF grid acting as a high-pass filter (ToF grid =
HPF grid = 3 V and ToF = 200 V). While this setup shows reasonable momentum
resolution in the bottom left panel, it stretches the electron pulse substantially, over-
lapping with the lower energy side of the previous pulse. Thus, using the ToF grid
as HPF is not ideal and it must be set to higher or equal to the ToF voltage as in
Fig. B.1c. When the HPF grid is used as high-pass filter in Fig. B.1c, momentum
resolution becomes worse due to microlensing issue. We therefore put the grids
closer to the MCP as shown in Fig. 4.2.
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Figure B.1: The performance of non-optimal high-pass filter (HPF) configura-
tion. HPF scheme with a) the MCP front b) the ToF grid c) the HPF grid. In the
bottom figures, the momentum-space images of the Dirac point in HOPG (highly
oriented pyrolytic graphite) are shown in the left and energy-momentum cuts along
K-Γ-K in the right.
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and Andrea Cavalleri. Snapshots of non-equilibrium Dirac carrier distribu-
tions in graphene. Nature Mater, 12(12):1119–1124, 2013.

[38] I. Gierz, F. Calegari, S. Aeschlimann, M. Chávez Cervantes, C. Cacho, R. T.
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[55] Steffen Hädrich, Jan Rothhardt, Manuel Krebs, Stefan Demmler, Arno
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ert, S. Däster, Y. Acremann, J. Viefhaus, W. Wurth, H. J. Elmers, and
G. Schönhense. Direct 3D mapping of the Fermi surface and Fermi velocity.
Nature Materials, 16(6):615–621, 2017.

[64] S.V. Chernov, K. Medjanik, C. Tusche, D. Kutnyakhov, S.A. Nepijko,
A. Oelsner, J. Braun, J. Minár, S. Borek, H. Ebert, H.J. Elmers, J. Kirschner,
and G. Schönhense. Anomalous d-like surface resonances on Mo(110) ana-
lyzed by time-of-flight momentum microscopy. Ultramicroscopy, 159:453–
463, 2015.

[65] David Schmitt, Jan Philipp Bange, Wiebke Bennecke, AbdulAziz AlMu-
tairi, Giuseppe Meneghini, Kenji Watanabe, Takashi Taniguchi, Daniel Steil,
D. Russell Luke, R. Thomas Weitz, Sabine Steil, G. S. Matthijs Jansen,
Samuel Brem, Ermin Malic, Stephan Hofmann, Marcel Reutzel, and Stefan
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