
High Power Mid-infrared to
Ultraviolet-visible Frequency Comb

A Thesis Presented

by

Anthony Catanese
to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Masters of Arts
in

Physics

Stony Brook University

December 2020



2

Stony Brook University

The Graduate School

Anthony Catanese

We, the committee for the above candidate, recommend acceptance of this thesis.

Thomas K. Allison — Thesis Advisor
Department of Physics and Astronomy, and Chemistry

Thomas Weinacht — Chairperson of the Committee
Department of Physics and Astronomy

Alan Calder
Department of Physics and Astronomy

This dissertation is accepted by the Graduate School

Matthew Dawber
Graduate Program Director



ii

To all those who gain sheer joy from the pursuit of objective truths.



iii

Acknowledgments

I would like to thank Jay Rutledge, my lab partner, whose contributions

were invaluable, including helping me record this data, and co-authoring the OPA

publication by writing a great introduction to that paper, which I have adapted

a significant portion of for this thesis. And Myles Silfies, who’s expertise was

key during many pivotal moments in this project, like generating first light from

the OPA. Furthermore, I would like to acknowledge the contributions made by

Jin, Chris, Peng, Alice, and Sergey. I would like to attribute my introduction

to wave mechanics and my understanding of the split-step Fourier algorithm to

Tom Weinacht; and express gratitude for Alan Calder’s guidance and generosity in

allowing us to run the PPLN waveguide simulations on his workstation at IACS.

Finally, I would like to thank my advisor Tom Allison, whose enthusiasm and

excitement when turning knobs along side us in the lab is infectious, his ability

to explain physics by recalling exact formulas on the spot is humbling, and his

dedication to producing the best experimental physicists is admirable.



iv

Abstract

The first part of this thesis discusses the development of a 100 MHz rep-

etition rate, 7 W, mid-infrared (MIR) frequency comb. This Optical Parametric

Amplifier (OPA) design features two stages of periodically poled lithium niobate

(PPLN), which are pumped by a Yb:fiber comb at 1.035 µm and seeded by a

Er:fiber comb at 1550 nm. The output of this OPA is 100 fs, 2.9 µm idler pulses,

with 7 W average power; and amplified signal pulses at 1.6 µm with 14 W average

power. With stabilized high average power, short pulse duration, uniform beam

spatial profile, and low noise, this OPA is ideal for further development into a light

source to drive high harmonic generation (HHG) in solids.

The second part of this thesis reports on the experiment to generate

high harmonics in periodically-polled Lithium niobate (PPLN) waveguides using

this MIR frequency comb, and compares this experiment to a simulation which

models broadband cascaded nonlinear effects in χ(2) media. Experimental results

from a 2017 experiment performed at NIST are also analyzed in the light of this
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new simulation. Using evidence from both experiments, an explanation for the

physical generating mechanism of the harmonics in PPLN waveguides is offered.

Finally, initial steps are taken toward designing an upgraded signal seed

branch to the MIR frequency comb. This improvement will enable the OPA to

reach it full potential to generate few-cycle MIR pulses. This final section reports

on a model for high repetition rate, nonlinear, Erbium Doped Fiber Amplifier

(EDFA) pumped at 980 nm and seeded at 1550 nm. This approach uses a hybrid

combination of the two-level approximation laser rate equations coupled to the

Generalized Nonlinear Schrodinger Equation (GNLSE) in order to capture, in high

fidelity, the physics of laser amplifiers along with the ultrafast pulse propagation

effects of dispersion and quadratic nonlinearity in optical fibers.
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1. Introduction

1.1 Motivation

The extension of optical frequency comb techniques to the mid-infrared

(mid-IR) have been mainly motivated by their applications, which can be broadly

categorized by their power requirements. The low power applications (<1 W)

are adequate for molecular spectroscopy, and lately topics of interest have been

spectroscopy in the "fingerprint" region [14, 71] and trace-gas sensing with high

discrimination [22, 54]. Therefore, the development of mid-infrared combs at the

<1 W level for molecular spectroscopy has thus been an area of intense activity.

In addition to spectroscopy, frequency combs in the mid-infrared (MIR)

are an excellent sources for driving nonlinear optics in solids. It is these applica-

tions, which require high laser power (>1 W) 1. The 2-5 µm wavelength range is

particularly attractive because it offers a pivot to generating both ultraviolet-visible

(UV-VIS) frequency combs via high harmonic generation (HHG) [25, 30, 60], and

1For the purpose of driving nonlinear optics peak power is the relevant metric. Here we are
considering ∼ MHz pulsed laser systems with ∼ fs pulse durations in order to make this broad
categorization
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broadband infrared combs via difference frequency generation (DFG)[24, 74] or

supercontinuum generation [65].

For the purpose of developing these high power drivers, frequency combs

based on Optical Parametric Amplification (OPA) offer several advantages. Since

no energy is stored in the parametric gain medium, which causes excessive heating,

the only high power limitation is crystal burning. And with DFG combs based on

multiple branches, the separate branches can be amplified to high average powers

in fiber amplifiers. [21, 50, 80]. Also, building multiple amplification stages in

series is relatively simple, and can achieve higher powers than one single stage.

For nonperturbative nonlinear optics sensitive to the phase of the electric

field (e.g. solid-state HHG), OPAs based on DFG between a pump and signal

derived from the same comb are particularly attractive due to passive elimination

of the carrier-envelope offset frequency, f0, producing a train of carrier-envelope

phase (CEP) stable pulses [9, 36]. This stands in contrast to competing technologies

based on Cr:ZnS [73] or Tm:fiber [42], for which it is nontrivial to stabilize f0 to

zero.

A variety of mid-IR frequency comb technologies have emerged over the

last decade, among them mode-locked quantum cascade lasers [33], microresonator

combs [46], and combs based on optical parametric amplifiers (OPA) [63] and

optical parametric oscillators (OPO) [1].

The first part of this thesis presents a 2.9 µm frequency comb based on

high-power DFG in a two-stage OPA, operating at 100 MHz repetition rate with

6.7 W average power and 100 fs pulse duration. To our knowledge, this remains
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Figure 1.1: Comparison of the average power of MIR frequency combs vs.
wavelength. The purple circle indicates the work done in this thesis, which should
not be confused with "This work" since this figure was published by [62]

.

the highest power mid-IR optical frequency comb reported to date (figure 1.1)

and among the highest average power ultrafast mid-IR light sources in general.

Furthermore, we demonstrate that this OPA has the potential to generate sufficient

bandwidth to support few-cycle mid-IR pulses with further refinement of the

seeding signal branch.

Frequency combs which extend from the MIR to the UV-VIS are con-

tinuously advancing the fields of spectroscopic sensing for chemical detection,

identifying infectious disease through breath analysis, trace gas monitoring in the

oil and gas industry, atomic clocks, quantum memories, imaging of nanometer

scale structures, attosecond pulse generation, and calibration of astronomical spec-
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trographs. [4, 23, 64, 79]. Originally designed for atomic clocks, frequency combs

provide an optical clockwork which enables counting atomic oscillations which are

about 105 times faster than Cesium clocks, which allows for unprecedented preci-

sion in the measurement of time (on the order of 1 part in 1018) [32, 72]. Today,

the frequency comb remains on the forefront of precision measurement technology,

and recently it has been proposed to use widely tuneable cavity enhanced frequency

comb spectroscopy for human breath analysis [29]. Well resolved spectra could

possibly be used to detect Covid-19 by identifying a change in cells metabolism.

The second part of this thesis presents the results of an experiment to

generate a broadband MIR to UV-VIS frequency comb using our MIR frequency

comb as a driver for high harmonic generation (HHG) in periodically polled lithium

niobate waveguides (PPLN). Experimental results are shown to be consistent with

a simulation of cascaded χ(2) processes, which answers a question first proposed

by [30] and the Scott Diddams group at NIST—"By what mechanism is the light

generated in PPLN waveguides?".

In the third part of this thesis I present a novel model for simulating pulse

propagation down Erbium doped gain fiber, which is the active element in the

Erbium Doped Fiber Amplifier (EDFA) that generates the OPA’s signal seed. This

high fidelity EDFA model designed for a MHz repetition rate, picosecond pulse

duration, non-linear EDFA, combines elements including pump absorption, ampli-

fied stimulated emission, excited state population depletion, and gain saturation;

along with fiber dispersion and non-linearity; and consideration to multiple pumps

which are co-propagating and counter propagating with the signal. Although my
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analysis focuses on only 1 piece of the next generation OPA signal seed branch,

in the appendix I have included code which solves the Generalized Nonlinear

Schrodinger Equation (GNLSE). This code can be easily be adapted to model the

entire next generation EDFA system. This is the first step to further refining the

signal seed branch of the OPA in order to generate the bandwidth needed to support

few-cycle MIR pulses.

1.2 What is a Frequency Comb?

A frequency comb is the spectrum of a laser that emits a pulse train that is

periodic in time and has a stable carrier envelope phase (CEP). One way of making

a frequency comb is a mode-locked laser (MLL) 2. Model locking stabilizes the

frequency spacing and relative phase of the oscillations within a laser cavity, so

that the output spectrum consists of equally spaced frequencies, which resemble

the teeth of a comb [68]. The well defined frequencies in a comb are useful for

coupling optical clocks to the microwave region of the electromagnetic spectrum,

performing molecular spectroscopy, and in general anywhere precise measurement

of frequency is required.

Figure 1.2 shows a concept drawing of the spectrogram of a frequency

comb, which illustrates the relationship between the time and frequency domain

representations of the pulse train generated by a mode locked laser. In the time

2A MLL is not the only way to make a frequency comb, but the term MLL often appears in
the definition of a comb. Other ways to make a frequency combs include (but are not limited to)
electro-optic modulation (EOM), optical parametric oscillators (OPO), and microresonators, which
can also generate a phase stable pulse train.
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Figure 1.2: Cartoon spectrogram of a frequency comb showing frequency on the
y-axis and time on the x-axis. 1) Time domain representation of a mode locked
laser is a pulse train with repetition rate frep. and carrier envelope phase offset
frequency f0. 2) This pulse train is constructed from a superposition of laser cavity
frequencies which are locked in frequency spacing and relative phase. 3) In the
frequency domain the "comb teeth" are separated by frep and the spectrum is
shifted by f0 such that the nth frequency component is determined by
fn = n frep + f0. Note, this spectrum is not to scale, there are approximately 107

comb teeth in the range from the MIR to the UV. 4) An analogy is often made
between a frequency comb and a reduction gear train because both systems have
a deterministic frequency and phase.

domain picture the period of the pulse train is T = 1/ frep, where frep is the repeti-

tion rate of the laser, and the carrier envelope phase (CEP) offset per pulse is given

by ∆φ = 2π f0T , where f0 (also referred to as fceo) is the CEP offset frequency.

For example, if frep = 100 MHz and f0 = 25 MHz then the CEP repeats every

4 pulses. The pulse train is constructed from a superposition of the frequencies

oscillating within the laser cavity each with frequency fn and carrier envelope
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phase offset frequency f0. Mode locking stabilizes the frequency spacing and

relative phases of the oscillations. Fourier transforming into the frequency domain

reveals n equidistant constituent frequencies which are spaced by frep and all share

the same carrier envelope offset frequency f0. Therefore, the frequency of the nth

comb tooth is entirely determined by the formula,

fn = f0 +n∗ frep (1.1)

A detailed explanation of methods of a model locking a laser is beyond this scope,

since this project was not about making a frequency comb from scratch but rather

amplification and frequency conversion to the MIR, and then to the UV-VIS, of

commercially available comb manufactured by Menlo Systems. A block diagram

of this process is shown in figure 1.3.

Figure 1.3: We begin with a commercially available 1550 nm, 100 MHz,
frequency comb manufactured by Menlo Systems. This is amplified in one branch
(green), and also wavelength shifted to 1035 nm and amplified in a second branch
(blue). The OPA converts these two wavelengths via DFG to a 3100 nm comb.
And the PPLN Waveguide generates harmonics of the 3100 nm light which extend
through the visible and into the ultraviolet (down to 330 nm).

I feel it’s important to show evidence that the MIR light generated in the

OPA and the UV-VIS light generated the PPLN waveguide, are frequency combs
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(i.e. they obey formula 1.1). Therefore, figure 1.4 shows the heterodyne optical

beat frequency measurement between the 2nd harmonic of the OPA pump light (501

nm center wavelength), and the 6th harmonic of OPA MIR light (513 nm center

wavelength) generated in the PPLN waveguide. When both signals are incident on

a photodiode the resulting beat note generates a voltage which is modulated at the

difference between the two carrier envelope phase frequencies according to,

fbeat = f01− f02 (1.2)

The 2nd harmonic of the OPA pump has f01, and the 6th harmonic of the MIR

light by necessity has f02 = 0 3. Therefore, we would expect a beat note at f01 and

this is what is shown in the right plot of figure 1.4. It is important to mention that

we have only considered a 1 comb tooth in equation 1.2, when in reality there are

about 106 comb teeth beneath the envelopes in in figure 1.4 (left) which participate

in mixing. The amplitude of the beat note is shown for two power settings. The

resolution bandwidth limit is 100 KHz 4, and this can be used as a proxy for line

width, which indicates that the comb is stable across approximately 1000 pulses.

3The idler f0 = 0 because it was generated via the difference of two other frequencies with the
same f0, which means this term drops away in the subtraction. All the harmonics of the idler have
the same f0 = 0

4A resolution bandwidth limit of 100 KHz refers to the fact that at settings below this filter
width in the spectrum analyzer the peak amplitude of the signal begins to decrease.
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Figure 1.4: Heterodyne measurement used to verify that the light from the OPA,
and the light generated in the PPLN Waveguide which is pumped by the OPA, are
frequency combs. (Left) green light generated by frequency doubling the 1035 nm
OPA pump light (orange) is mixed with 6th harmonic from the PPLN waveguide
(blue), and the beat note (shifted down to 0 frequency), shown in the right plot, for
2 power levels, confirms the phase stability of the frequency comb. The RBW is
100 kHz.

1.3 Derivation of the Master Nonlinear Wave Equa-

tion

The derivation of the nonlinear wave equation, which describes the inter-

action of an electric field and a dielectric, begins with Maxwell’s equations in SI

units.

~∇ ·~D = ρ (1.3)
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~∇ ·~B = 0 (1.4)

~∇×~E =−∂~B
∂ t

(1.5)

~∇× ~H =
∂~D
∂ t

+ ~J (1.6)

We will assume there is no free charge (ρ = 0), no free current (~J = 0), and the

material is non-magnetic (µ = 1). However, the material will be allowed to be

nonlinearly polarized,

~D = ε0~E +~P (1.7)

Where the polarization P can be expanded in powers of the electric field.

~P = ε0(χ
(1)~E +χ

(2)~E2 +χ
(3)~E3 + ...) (1.8)

In general χ j is a dielectric tensor, but in the case of linearly polarized light χ(1),

χ(2)[m/V ], and χ(3)[m2/V 2] are reduced to scalar quantities. The derivation of the

wave equation proceeds by taking the curl of Faraday’s law, switching the time

and space derivatives, using Ampere’s law to replace ~∇×~B, making substitutions

for ~D = ε0~E +~P and c = 1/
√

µ0ε0, and finally using a vector identity to replace

the triple cross product and dropping the divergence of E (which is making the

assumption that the transverse variation of the electric field is small). Then the
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nonlinear polarization plays the role of a driving term in the wave equation which

can be written in the form,

∇
2~E− 1

ε0c2
∂ 2 ~D(1)

∂ t2 =
1

ε0c2
∂ 2 ~PNL

∂ t2 (1.9)

Where ~D(1) = ε0~E + ~P(1) ≡ ε0ε(1)~E, and ε(1) = 1+ χ(1) is a scalar quantity for

an isotropic material, but ε(1) is a function of frequency ω for a medium with

dispersion. And ~PNL = ε0χ(2)~E2 + ε0χ(3)~E3 + .... Making these substitutions we

arrive at the time domain wave equation.

∇
2~E− ε(1)(ω)

c2
∂ 2~E
∂ t2 =

1
ε0c2

∂ 2 ~PNL

∂ t2 (1.10)

In the case of discrete frequencies, equation 1.10 can be written as an envelope

centered around frequency ωn as in equation 1.11. In that case the solution can be

written as a superposition of waves with frequency ωn [11].

∇
2~En−

ε(1)(ωn)

c2
∂ 2~En

∂ t2 =
1

ε0c2
∂ 2 ~PNL

n
∂ t2 (1.11)

The rest of the derivation is structured in order to achieve the same result as in [18],

since this is the theory we used to model HHG in PPLN waveguides. Defining the

Fourier transform as, X(ω) =F [x(t)] =
∫

∞

−∞
x(t)e−iωtdt we can Fourier transform

equation 1.10, using the identity F [dx(t)/dt] = −iωX(ω), and get a frequency

domain representation of the nonlinear wave equation for a plane wave propagating



CHAPTER 1. INTRODUCTION 12

in the z direction.

∂ 2Eω

∂ z2 +
ω2

c2 ε(ω)Eω =
−ω2

ε0c2 PNLω (1.12)

In the case of no nonlinearity, the right hand side of this equation is 0 and the

solution is Eω(z,ω)=Uωeik(ω)z, where Uω is a constant, and the dispersion relation

is k(ω) = ω/c
√

ε(ω). If the nonlinear polarization is considered to be a small

perturbation, then this equation can be solved using the slowly varying envelope

approximation where Uω is considered to be a slowly varying function of space

and frequency, so we write Eω(z,ω) = Uω(z,ω)eik(ω)z. Taking derivatives and

plugging the expression for Eω into the left hand side of equation 1.14 we find,

∂ 2Uω

∂ z2 −2ik(ω)
∂Uω

∂ z
=
−ω2

ε0c2 PNLωeik(ω)z (1.13)

In the slowly varying envelope approximation (SVA) the second derivative is

dropped, which is valid when the change in envelope is small on the scale of

the wavelength, ∂zUω << 2k|Uω |. After transforming back to Eω , the equation

referred to as the forward Maxwell equation is obtained.

∂Eω

∂ z
+ ik(ω)Eω =

−iω2

2ε0c2k(ω)
PNLω (1.14)

Next we define a real electric field consisting of a slowly varying real envelope

B(z, t) multiplied by a real carrier wave with a time dependent phase φ(t) defined
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by equation 1.15

E(z, t) = B(z, t)cos(ω0t− k0z+φ(t)) (1.15)

Equivalently we can define the electric fields using a complex envelope A(z, t) =

B(z, t)eiφ(t) as given by equation 1.16.

E(z, t) =
1
2

A(z, t)eiω0t−ik0z +
1
2

A∗(z, t)e−iω0t+ik0z (1.16)

For instance A(z, t) could be a Gaussian envelope with a quadratic time dependent

phase which can be written like [2],

A(z, t) = e
−(1+iC)t2

t20 (1.17)

Where C is a dimensionless constant which gives the magnitude of the chirp.

Fourier transforming 1.16, using the identity F [x∗(t)] = X∗(−ω) yields,

E(z,ω) =
1
2

A(z,ω−ω0)e−ik0z +
1
2

A∗(z,−ω−ω0)eik0z (1.18)

This formula says that the spectrum of the real electric field E(z, t) is double sided

with each envelope centered around +w0 and −w0. We will write 1.16 as real part

the complex envelope multiplied by a complex carrier wave,

E(z, t) = Real{A(z, t)eiw0t−ik0z} (1.19)

Taking a standard approach, we will plug in the entire complex electric field into
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equation 1.14, knowing that we can always just take the real part at the end to

recover the physical electric field. So we write,

E(z, t) = A(z, t)eiw0t−ik0z (1.20)

And its Fourier transform, which is a single sided spectrum containing only the

positive frequency components,

E(z,ω) = A(z,ω−ω0)e−ik0z (1.21)

Defining a relative frequency grid Ω = ω−ω0 we write the trial solution we will

plug into equation 1.14

Eω = A(z,Ω)e−ik0z (1.22)

Similarly, the polarization envelope can be defined as,

PNLω
= Ap(z,Ω)e−ik0z (1.23)

Note that the envelopes defined here contain only positive frequencies if we are

considering the absolute frequency grid, and on the relative frequency grid Ω the

envelope has support in the domain [−ω0,∞]. Plugging 1.22 and 1.23 into equation

1.14 yields an envelope equation given by 1.24,

∂A(z,Ω)

∂ z
− ik(ω0)A(z,Ω)+ ik(ω)A(z,Ω) =

−iω2

2ε0c2k(ω)
Ap(z,Ω) (1.24)
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This equation can be simplified by Taylor expanding the dispersion curve according

to 1.25 and canceling the constant phase offset term k(ω0) .

k(ω) = k(ω0)+
∂k
∂ω

∣∣∣
w0

Ω+
1
2

∂ 2k
∂ω2

∣∣∣
w0

Ω
2 +

1
6

∂ 3k
∂ω3

∣∣∣
w0

Ω
3 + ... (1.25)

Adopting the standard notation where, β (ω) = Re[k(ω)], and βm = ∂ mβ (ω)
∂ωm

∣∣∣
ω0

,

equation 1.24 can be re-written in the following way,

∂A(z,Ω)

∂ z
+
(

i
∞

∑
m=1

1
m!

βmΩ
m
)

A(z,Ω) =
−iω2

2ε0c2k(ω)
Ap(z,Ω) (1.26)

Note that by choosing to discard the imaginary part of k(ω) we are neglecting

absorption, but this is reasonable in the regions where the material is transparent

because the propagation lengths are short. And where the material absorbs strongly,

like above the band gap in PPLN, absorption is manually added back in. Using

the approximation k(ω)≈ ω

c n0, which is valid if ∂n(ω)
∂ω

∣∣∣
ω0
·ω0 << n(ω0) (which

in words says the index of refraction doesn’t vary dramatically with frequency),

the right hand side of equation 1.26 can be rewritten as,

∂A(z,Ω)

∂ z
+
(

i
∞

∑
m=1

1
m!

βmΩ
m
)

A(z,Ω) =
−iω

2n0cε0
Ap(z,Ω) (1.27)

Inverse Fourier transforming equation 1.27 yields the time domain representation.

Performing the inverse transform of the right hand side proceeds in the following
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manor.

F−1
{ −iω

2n0cε0
Ap(z,Ω)

}
=
−i

2n0cε0

∫
∞

−∞

ωAp(z,ω−ω0)e−iωtdω (1.28)

=
−i

2n0cε0

∫
∞

−∞

(Ω+ω0)Ap(z,Ω)e−i(Ω+ω0)tdΩ (1.29)

=
−i

2n0cε0
e−iω0t

∫
∞

−∞

(Ω+ω0)Ap(z,Ω)e−iΩtdΩ (1.30)

=
−i

2n0cε0
e−iω0t

[
− i

∂

∂ t
Ap(z, t)+ω0Ap(z, t)

]
(1.31)

=
−ie−iω0t

2n0cε0
ω0

[
1− i

ω0

∂

∂ t

]
Ap(z, t) (1.32)

The inverse transform of the left hand side is simpler, and putting it all together

yields,

∂A(z, t)
∂ z

+
(

i
∞

∑
m=1

1
m!

βm

(
− i

∂

∂ t

)m)
A(z, t) =

−i
2n0cε0

ω0

[
1− i

ω0

∂

∂ t

]
Ap(z, t)

(1.33)

Equation 1.33 is currently in a lab reference frame defined by time t, but can be

shifted in time into a frame τ which is moving at the group velocity of the pump

pulse, τ = t−β1z, by subtracting off the tilt of the dispersion curve (i.e. the linear

term in the Taylor expansion). Then equation 1.33 becomes 1.34 in the co-moving
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frame.

∂A(z,τ)
∂ z

+
(

i
∞

∑
m=2

1
m!

βm

(
− i

∂

∂τ

)m)
A(z,τ) =

−i
2n0cε0

ω0

[
1− i

ω0

∂

∂τ

]
Ap(z,τ)

(1.34)

Equation 1.34 is the Master Nonlinear Wave Equation, and is also known as the

Generalized Nonlinear Schrodinger Equation (GNLSE) [18]. To illustrate how

this formula works I will use it to derive the coupled equations for Difference

Frequency Generation (DFG) which are used to model the OPA we built; then

extend this formula to the continuum to model high harmonic generation (HHG) in

Periodically Polled lithium niobate (PPLN) waveguides; and finally formulate the

equation which is applicable to ultra short pulses in optical fibers, which I used to

generate the high fidelity model of an Erbuim Doped Fiber Amplifier (EFDA) in

the final section of this thesis.

1.3.1 Derivation of the Coupled DFG Equations From the

Master Nonlinear Wave Equation

For non-centrosymmetric 5 materials like lithium niobate, with a χ(2)

response, the nonlinear polarization coupling between three light fields, ω1,ω2,ω3

5Non-centrosymmetric means the material lacks inversion symmetry, which means when the
sign of the electric field is flipped E→−E the sign of the polarization stays the same.
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is expanded according to equation 1.35

PNL(z, t) = ε0χ
(2)E(z, t)2 = ε0χ

(2)[A1(z, t)eiω1t−ik1z +A2(z, t)eiω2t−ik2z

+A3(z, t)eiω3t−ik3z + cc]2.
(1.35)

This mixture of frequencies corresponding to the following processes: second

harmonic generation (SHG) 2ω1,2ω3,2ω3, sum frequency generation (SFG) ω1 +

ω2, ω2 +ω3, ω3 +ω1, and difference frequency generation (DFG) ω3−ω1, ω3−

ω2, ω2−ω1. In the case of difference frequency generation (DFG) one considers

mixing a high energy pump ω3, signal frequency ω2 and idler frequency ω1. From

energy conservation, ω3 =ω2+ω1, which can be rearranged into ω1 =ω3−ω2 and

ω2 = ω3−ω1, and the expressions corresponding to these frequency combinations

can be pulled out of the expansion of PNL.

The choice to use only the positive frequency components is consistent with

our formulation of equation 1.34, where we plugged in a single sided spectrum

for the electric field (equation 1.20). The form of PNL(z, t) for DFG is given in

equation 1.36. Our choice to neglect the processes which are not intended to be

phase matched is justified because the light generated by these processes will be
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down by an order of magnitude. 6.

PNL(z, t) = ε0χ
(2)(A∗2A3ei(ω3−ω2)t−i(k3−k2)z +A∗1A3ei(ω3−ω1)t−i(k3−k1)z

+A1A2ei(ω1+ω2)t−i(k1−k2)z)

(1.36)

Because of the superposition principle we can split equation 1.33 into three coupled

equations for each light field. Using equation 1.23 we define the idler polarization

envelope as,

A1
p(z, t) = ε0χ

2e−iω1t+ik1z(A∗2A3eiω1t−i(k3−k2)z) = ε0χ
(2)A∗2A3e−i(k3−k2−k1)z

(1.37)

Plugging this into equation 1.33 yields,

∂A1(z, t)
∂ z

+ iD′A1(z, t) =
−i

2n0cε0
ω0

[
1− i

ω0

∂

∂ t

]
ε0χ

(2)A∗2A3e−i(k3−k2−k1)z (1.38)

Where the dispersion operator D′ = ∑
∞
m=1

1
m!βm

(
− i ∂

∂ t

)m)
. If the pulse duration

is greater than 100 fs we can safely drop the self steepening term and equation 1.38

becomes,

∂A1(z, t)
∂ z

+ iD′A1(z, t) =
−iχ(2)

2n0c
ω0A∗2A3e−i(k3−k2−k1)z (1.39)

6But in reality when one hits a crystal with 50 W of 1035 nm pump light focused down to a 100
µm spot (∼ 10 GW/cm2), there’s a nontrivial amount of SHG (green) and SFG (red) generated
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Now we are free to choose what reference frame the system of equations will

propagate in, and traditionally the frame is set to the pump. Defining δ13 = β 1
1 −β 3

1

as the group velocity mismatch between the idler and pump, and ∆k = k3− k2− k1

as the phase mismatch, and keeping only the group velocity dispersion (GVD)

term, we find,

∂A1(z,τ)
∂ z

+δ13
∂A1(z,τ)

∂τ
− i

2
GV D1

∂ 2A1(z,τ)
∂ 2τ

=
−ide f f ω1

n1c
A∗2A3e−i∆kz (1.40)

Where χ(2) = 2de f f . Using this same approach the final two coupled differential

equations can be written out for the signal ω2 and pump ω3,

∂A2(z,τ)
∂ z

+δ23
∂A2(z,τ)

∂τ
− i

2
GV D2

∂ 2A2(z,τ)
∂ 2τ

=
−ide f f ω2

n2c
A∗1A3e−i∆kz (1.41)

∂A3(z,τ)
∂ z

− i
2

GV D3
∂ 2A3(z,τ)

∂ 2τ
=
−ide f f ω3

n3c
A1A2e−i∆kz (1.42)

In the section which describes the design of the OPA these equations are solved,

and the solutions are used to optimize the design of the OPA and predict the power

output.
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1.3.2 Extension to The Broadband Envelope Equation

For χ(2) nonlinearity

The previous section showed how to derive the DFG equations for three

discrete coupled modes, ω1,ω2,ω3 using the master equation. We could only

do that because we could separate the equations for each of the normal modes

frequencies. When we move to a continuous spectrum we must treat the entire

envelope accordingly. This section follows the remainder of the derivation in [18].

Beginning with the χ(2) response we write,

PNL = ε0χ
(2)[Re{A(z, t)eiω0t−iβ0z}]2 (1.43)

Where,

Re{A(z, t)eiω0t−iβ0z}= 1
2

A(z, t)eiω0t−ik0z +
1
2

A∗(z, t)e−iω0t+ik0z (1.44)

So we find,

PNL(z, t) =
ε0χ(2)

4
[A2e2iω0t−2ik0z +A∗2e−2iω0t+2ik0z +2|A|2] (1.45)

Because the envelope was defined as containing positive frequency components

(equation 1.22), the first term in equation 1.45 contains positive frequencies, and is

responsible for SFG. The second term contains negative frequencies. And the third

term 2|A|2 contains a mixture of both, and is responsible for DFG. Also because

of this convention , PNL(z, t) must be transformed into an object containing only
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positive frequency elements. This is done by throwing away the second term in

1.45 and taking the Hilbert transformation, or the analytic signal representation, of

the DFG term [18]. This is performed by Fourier transforming into the frequency

domain, applying the recipe given in equation 1.46, and then inverse Fourier

transforming back into the time domain.

AS{X(ω)}=


2X(ω), if ω > 0

X(ω), if ω = 0

0, if ω < 0

(1.46)

Where AS{X(ω)} represents the analytic signal representation. In order to draw a

connection between objects consider,

A(z, t)eiω0t ≡ AS[
1
2

A(z, t)eiω0t−ik0z +
1
2

A∗(z, t)e−iω0t+ik0z] (1.47)

Applying the analytic signal transformation to equation 1.45 yields the correct

form of the nonlinear polarization.

PNL(z, t) =
ε0χ(2)

2
[A2e2iω0t−2ik0z +AS[|A|2]] (1.48)

And calculating the envelope according to the inverse Fourier transform of equation

1.23 which is,

Ap(z, t) = PNL(z, t)e−iω0t+ik0z (1.49)



CHAPTER 1. INTRODUCTION 23

The final form of the nonlinear polarization envelope is,

Ap(z, t) =
ε0χ(2)

2
[A2eiω0t−ik0z +AS[|A|2]e−iω0t+ik0z] (1.50)

All that is left to do is cast this equation in a frame which moves with the funda-

mental frequency by recalling τ = t−β1z. Plugging this into 1.50 and the entire

polarization envelope into the master equation 1.34 yields,

∂A(z,τ)
∂ z

+ iDA(z,τ) =
−iχ2

4n0c
ω0

[
1− i

ω0

∂

∂τ

]
[A2eiω0t−ik0z +AS[|A|2]e−iω0t+ik0z]

(1.51)

Where D = ∑
∞
m=2

1
m!βm

(
− i ∂

∂τ

)m
. In the section of this thesis which describes our

experiment to generate high harmonics in chirped PPLN waveguides we solve this

equation numerically and compare it to the experimental results.

1.3.3 Derivation of the GNLSE with χ(3) nonlinearity

In centrosymmetric materials which lack inversion symmetry χ(2) must

identically vanish. This is easy to illustrate with the following example. If PNL ∝ E2

and the direction of the electric field is inverted, E→−E, then the nonlinear polar-

ization clearly remains in the same direction, which contradicts the characteristic of

centrosymmetric material. Therefore, χ(2) must vanish. Many materials including

Fused Silica, which is used to make optical fibers, are centrosymmetric, and as

a result the next leading order in the expansion of the nonlinear polarization χ(3)
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dominates. As usual, the starting point is the general form of the master equation

in the frame co-moving at the group velocity of the pump (equation 1.34), which is

repeated here,

∂A
∂ z

+ iDA =
−i

2n0cε0
ω0

[
1− i

ω0

∂

∂τ

]
Ap (1.52)

The nonlinear polarization envelope Ap for cubic media is given by the following

equation [3],

Ap(z,τ) =
3
4

ε0χ
(3)A(z,τ)

∫
∞

0
R(t′)|A(z, τ− t′)|2dt′ (1.53)

Where the |A|2 under the integral is due to the intensity dependent (I ∝ |A|2) index

of refraction, and the response function is a sum of Kerr (instantaneous) and Raman

(delayed) nonlinearity, which is given by the following formula,

R(t) = (1− f r)δ (t)+ fRhR(t) (1.54)

Where fR is the fractional contribution from the Raman response, and hR(t) is

the Raman response function. The exact form of the Raman function hR depends

on the medium and is formulated from experimentally derived quantities. But

for illustrative purposes the Raman response hR(t) resembles a damped harmonic

oscillator response with ∼ 50 f s time constant. Plugging equation 1.53 into the
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right hand side of 1.52 yields,

∂A
∂ z

+ iDA =−i
3Re{χ(3)}

8n0c
ω0

[
1− i

ω0

∂

∂τ

]
A
∫

∞

0
R(t′)|A( τ− t′)|2dt′ (1.55)

Where I have considered absorption, due to Im{χ(3)} to be negligible, which is

reasonable given the relatively short propagation lengths I simulate. It is infor-

mative to pause here in order to evaluate units. The units of χ(3) are [V/m]3,

and the electric field is in units [V/m], which makes the left and right hand side

units of equation 1.55 consistent in units of [V/m2]. It is a commonly accepted

standard to transform equation 1.55 into a form where the electric field has units
√

W and represents the peak power in the pulse. This can be done using the equiva-

lency |A′|2[W ] = 1/2ε0n0cAe f f |A|2[V/m]2, in which case the nonlinear scale factor

becomes γ [1/(W ·m)] and can be calculated by, [3],

γ(ω0) =
ω0n2

cAeff
(1.56)

Where n2 is an experimentally derived quantity known as the Kerr coefficient. But

in practice, when working with optical fibers, γ is a parameter supplied by the

manufacturer. Putting this all together yields,

∂A
∂ z

+ iDA=−iγ(ω0)
[
1− i

ω0

∂

∂τ

](
(1− fR)A|A|2+A

∫
∞

0
fRhR(t′)|A( τ−t′)|2dt′

)
(1.57)
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Which is applicable to broadband pulse envelopes that contain few optical cycles,

and in the in the case of 1000 nm light this is > 10 fs pulse durations.

It is worth while to point out that this form of the GNLSE is the complex

conjugate of the form which appears in a widely accepted standard text "Nonlinear

Fiber Optics" by Agrawal. Physically this is inconsequential because the electric

field has Hermitian symmetry, so one can solve for the envelope or its complex

conjugate. However, when it comes to numerically solving this equation (1.57)

it’s important to use the following Fourier transform convention, Aω = fft{At} and

At = ifft{Aω}, and the derivative is given by dAt
dt = ifft(iωfft(At)) If the opposite

Fourier transform convention is used then take the complex conjugate of equation

1.57

Equation 1.57 is the final result, and in the section where I model the Erbium

Doped Fiber Amplifier (EFDA) I solve this form of the equation numerically using

the Matlab code which is in the appendix of this thesis.
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2. OPA Simulation

2.1 Numerical Solution to the Coupled Wave

Equations for DFG

Optical parametric amplification was modeled in one spatial dimension

as a χ(2), three-wave, mixing of Gaussian pulses using the equations in [49].

These equations are the same as the ones which were derived in the section 1.3.1

of this thesis. Using input pulse parameters supplied by our measurements, and

dispersion and nonlinear parameters computed from reported PPLN properties [20],

we applied the Fourier split-step method to solve for the power and spectrum in 2

stages of PPLN crystals. These simulations helped determine ideal specifications

of stage 1 and 2 for maximum gain and bandwidth support.

The DFG interaction is governed by a system of three coupled partial

differential equations [49] for the envelopes of the electric field for idler A1, signal
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A2, and pump A3. They are,

∂A1

∂ z
+

1
2i

β
1
2

∂ 2A1

∂τ2 +δ13
∂A1

∂τ
=−iσ1A∗2A3e−i∆kz (2.1)

∂A2

∂ z
+

1
2i

β
2
2

∂ 2A2

∂τ2 +δ23
∂A2

∂τ
=−iσ2A∗1A3e−i∆kz (2.2)

∂A3

∂ z
+

1
2i

β
3
2

∂ 2A3

∂τ2 =−iσ3A1A2ei∆kz (2.3)

where i is the imaginary unit, β i
2 is the group velocity dispersion (GVD) of each

pulse (i=1, 2, 3) in the medium, σi =
de f f ωi

cni
is the nonlinear scale factor for

each field at angular frequency ωi with index of refraction ni, de f f = 2/π d33

where d33 = χ(2)/2 is the dielectric tensor element [34], ∆k = k3− k2− k1 is the

wavevector mismatch between fields, δi3 =
1

vgi
− 1

vg3
= β i

1−β 3
1 is the group velocity

mismatch (GVM) of either idler or signal relative to the pump field, and L is the

crystal length.

In order to calculate the initial electric field envelopes for the idler A1,

signal A2, and pump A3 we need to specify the average power Pave, repition rate of

the laser frep, pulse duration τ , and beam waist w. 1 Then we calculate the energy

per pulse Epp,

Epp =
Pave

frep
(2.4)

1The convention we use for a Gaussian pulse is τ = FWHM
2
√

ln(2)
, and the beam waist w is the radius

at the 1/e2 height.
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The peak power in a pulse Ppk,

Ppk =
Epp

FWHM
∗0.9394 (2.5)

Where the factor of 0.9394 is a correction for the peak power of a square pulse to a

Gaussian pulse with the same FWHM which contains the same total energy. And

finally the peak intensity of the pulse I0 given by,

I0 =
2Ppk

πw2 (2.6)

Then the pulse intensity envelope as a function of time, with an offset t0 included

to allow a delay between the pump and signal pulses, is given by,

I = I0e
−(t−t0)

2

τ2 (2.7)

Which can then be converted from intensity [W/m2] to electric field [V/m] accord-

ing to,

I =
1
2

nε0c|A|2 (2.8)

Where c is the speed of light, ε0 is the permittivity of free space, and n is the index

of refraction. Since we are simulating DFG between the pump and signal pulses

A2 and A3 are calculated according to the previous equations, and A1 (idler) is

initialized to zero.

Looking at the differential equations 2.1 2.2 2.3 there are four parameters
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which still need to be calculated for each pulse. They are, the group velocity

dispersion (GVD) for each pulse β i
2, nonlinear scale σi, the wavevector mismatch

∆k, and the group velocity mismatch δi3 of the idler and signal relative to the pump.

In order to calculate these parameters we begin with the temperature dependent

index of refraction for 5% MgO Lithium Niobate. This is given by the Sellmeier

equation and its coefficients which are available from Covesion’s website [20]. In

order to take advantage of the higher non-linear coefficient all the incident beams

must be polarized along the extraordinary axis, which is parallel the thickness of

the crystal. The wavenumber is calculated according to,

k =
2πn(λ )

λ
≡ ω

c
n(ω) (2.9)

Then the group velocity dispersion can be calculated by,

β
i
2 =

∂ 2k
∂ω2

∣∣∣∣
ωi

(2.10)

Followed by the nonlinear response,

σi =
deffωi

cni
(2.11)

Where deff = 14×10−6[um/V] for PPLN. The group velocity,

vgi =
∂ω

∂k

∣∣∣∣
ωi

(2.12)
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And the group velocity mismatch between the signal or idler relative to the pump,

δi3 =
1

vgi
− 1

vg3
(2.13)

Finally, we calculate the wavevector mismatch between the pulses ∆k according to,

∆k = k3− k2− k1 (2.14)

Looking at equation 2.1, 2.2, 2.3, it is apparent that the magnitude of the RHS is

spatially modulated with a period,

Λ =
2π

∆k
(2.15)

Since the RHS governs the gain of the idler, signal, and pump in the OPA, this

would suggest that the gain is modulated with a spatial period of Λ. Additionally,

since Λ≈ 30 µm for idler, signal, and pump wavelengths of 3.11, 1.55, 1.035 µm,

and typical PPLN crystal lengths are ∼ 1000 µm, this would suggest that the idler

gain would just oscillate over many cycles, averaging to zero, and the OPA would

not be an effective amplifier. However, if we were to subtract another wavevector

2π/Λ such that ∆keff becomes,

∆keff = k3− k2− k1−2π/Λ = 0 (2.16)

Then the gain of the idler no longer oscillates and becomes ∝ A∗2A3. From an

engineering perspective "perfect phase matching" described by this condition is
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not possible in Lithium Niobate, but Quasi Phase Matching (QPM) is an effective

alternative. In OPM the sign of deff is flipped every half polling period (Λ/2) by

applying a strong electric field to the Lithium Niobate crystal during manufacturing.

This gives the electric fields a −π phase shift every time they get π out of phase

which causes the gain to increase monotonically [11]. This is illustrated in figure

2.1. The curves showing no phase matching, ideal phase matching, and QPM were

generated using the solutions to equations (2.1, 2.2, 2.3).

Figure 2.1: Idler power vs. propagation distance z for the first 3 polling periods Λ

using the simulation. The effect of no phase matching is shown in blue, ideal
phase matching in yellow and quasi phase matching in red.

Note the QPM curve’s characteristic "scalloped" gain which is a result of imperfect

phase matching throughout the polling period. Having solved for all the simulation

parameters, the differential equations can be solved using the Split Step Fourier

Method (SSFM).

The SSFM is a numeric procedure used to solve nonlinear partial differential

equations of Fourier transform pairs. It involves splitting up the equations into
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a nonlinear and a linear part and then propagating the nonlinear part in the time

domain, Fourier transforming, and then propagating the linear part in the frequency

domain. In order to explain the implementation of the method, it’s simplest to use

the pump envelope A3 as an example. The differential equation which governs the

evolution of the pump envelope is,

∂A3

∂ z
+

1
2i

β
3
2

∂ 2A3

∂τ2 =−iσ3A1A2ei∆kz (2.17)

We begin by splitting this into a nonlinear part.

∂A3

∂ z
=−iσ3A1A2ei∆kz (2.18)

And a linear part which includes the dispersion terms,

∂A3

∂ z
=− 1

2i
β

3
2

∂ 2A3

∂τ2 (2.19)

The nonlinear part is exactly solvable if we assume that A1 and A2 are constant. Of

course they aren’t really constant, but if the step in z (which we will denote as h)

is small then it is reasonable to treat A1 and A2 as constant for this step. Then the

equation is separable and the solution is,

A3(z+h) = A3(z)−
σ3A1A2

∆k
(ei∆k(z+h)− ei∆k(z)) (2.20)

The simulation can tolerate relatively course steps in z, when the electric field

envelopes do not change rapidly. We found that 4 steps per polling period (h =
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7.6 µm) resulted in a fractional error of only 0.012, after 2 mm of propagation,

when compared to 256 steps per polling period (h = 0.12 µm), and gave the

simulation approximately two orders of magnitude boost in speed.

The linear part is naturally solved in the Fourier domain where we can use

the differentiation properties of Fourier transforms. Let A3
ω and A3

t be transform

pairs of the pump pulse envelope A3. Then,

d2A3
t

dt2 ←−F −→−ω
2A3

ω (2.21)

And the dispersion equation can be Fourier transformed and written as,

∂A3
ω

∂ z
=

1
2i

β
3
2 ω

2A3
ω (2.22)

Which is separable and the solution is,

A3
ω = A3

ω(z = 0)e−
i
2 β 3

2 ω2z (2.23)

This represents the rotation of A3
ω by a phase angle φ =−1

2β 3
2 ω2z. Therefore, if

we want to propagate A3
ω by a small step h we compute,

A3
ω(ω,z+h) = e−

i
2 β 3

2 ω2hA3
ω(ω,z) (2.24)

Note that we can easily add a third order dispersion term β 3
3 by adding it to the



CHAPTER 2. OPA SIMULATION 35

propagator,

A3
ω(ω,z+h) = e−

i
2 β 3

2 ω2h− i
6 β 3

3 ω3hA3
ω(ω,z) (2.25)

Writing down the dispersion operators for the idler and signal pulses proceed in

the same manor, and for completeness the propagation equation for the signal A2

(including the 3rd order dispersion term) is,

A2
ω(ω,z+h) = exp{−iωδ23h− i

2
β

2
2 ω

2h− i
6

β
2
3 ω

3h}A2
ω(ω,z) (2.26)

And for the idler A1,

A1
ω(ω,z+h) = exp{−iωδ13h− i

2
β

1
2 ω

2h− i
6

β
1
3 ω

3h}A1
ω(ω,z) (2.27)

Finally, we can put together the entire split step method in pseudo code.
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for j=1:length(z)-1

% Apply the nonlinear operator in the time domain

At1 = At1 +
σ1At∗2 At3

∆k (e−i∆kz[ j+1]− e−i∆kz[ j])

At2 = At2 +
σ2At∗1 At3

∆k (e−i∆kz[ j+1]− e−i∆kz[ j])

At3 = At3− σ3At1At2
∆k (ei∆kz[ j+1]− ei∆kz[ j])

% Fourier transform to the frequency domain

Aω1 = FAt1

Aω2 = FAt2

Aω3 = FAt3

% Apply the dispersion operator in the frequency domain

Aω1 = exp{−iωδ13h− i
2β 1

2 ω2h− i
6β 1

3 ω3h} Aω1

Aω2 = exp{−iωδ23h− i
2β 2

2 ω2h− i
6β 2

3 ω3h} Aω2

Aω3 = exp{− i
2β 3

2 ω2h− i
6β 3

3 ω3h} Aω3

% Inverse Fourier transform back to the time domain

At1 = F−1Aω1

At2 = F−1Aω2

At3 = F−1Aω3

end
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By storing the electric field values Ati(t,z) and Aωi(ω,z) at every step in z

we have obtained all the simulation data necessary to understand the evolution of

the idler, signal, and pump pulses thorough the crystal. Since we are most inter-

ested in power buildup in the amplifier, we begin by calculating optical intensity

I(t) [W/m2] given by,

I(t) =
1
2

cε0n|A(t)|2 (2.28)

Integrating I(t) over time yields the total energy delivered per unit area per pulse

(energy density per pulse), which is called the pulse fluence F [J/m2]

F =
∫

∞

−∞

dtI(t) (2.29)

Then by multiplying the fluence by the pulse area and the repetition rate we can

calculate the average power in the pulse Pave[W ].

Pave =
1
2

Fπw2 frep (2.30)

Where w is the Gaussian beam waist.

2.2 Results of the OPA Simulation

Two sequential stages of periodically polled Lithium niobate (PPLN) were

simulated in order to predict the performance of the OPA. A drawing of this is

shown in figure 2.2. Stage 1 was simulated as a 2 mm thick PPLN crystal, and the
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Figure 2.2: Two stages of PPLN were simulated. Stage 1, is 2 mm thick, pumped
with 5.7 W of 1035 nm (focus waist w = 67 µm, ≈ 10 GW/cm2), and seeded with
292 mW of 1550 nm signal (focus waist w = 60 µm). After stage 1 the 3 µm idler
and the pump is discarded and the amplified signal proceeds to stage 2. Stage 2,
is 2 mm thick, pumped with 48 W (w = 137 µm, ≈ 10 GW/cm2), and seeded with
the 1550 nm signal from stage 1 (w = 137 µm). This figure is from [49].

input parameters were the following. The signal seed was a Gaussian pulse with a

center wavelength of 1.55 µm, 292 mW average power, 100 fs pulse duration, and

focused to a spot size of 60 µm. The stage 1 pump was also a Gaussian pulse with

a center wavelength of 1.035 µm, 5.7 W average power, 180 fs pulse duration, and

67 µm spot size.

This is followed by stage 2 which was seeded using the signal output of

stage 1, and pumped with 48 W, with a focal spot size of 137 µm 2. The simulation

of stage 2 was run for a 2 mm or 1 mm crystal. Both crystals had a polling period of

30.49 µm and were at a temperature of 80 C. In both stages the signal-pump delay

2These are measured spot sizes at the site of the crystal, and are the result of our best effort to
meet the design criteria of 10 GW/cm2.



CHAPTER 2. OPA SIMULATION 39

was optimized in order to minimize group velocity walk off and thus maximize

the power output of the OPA. This optimization was performed in the simulation

by scanning the signal-pump time delay parameter until the final idler power was

maximized. This is equivalent to scanning the signal-pump delay stage manually

in the experiment.

We ran the simulation for a number of different input configurations and

I have chosen to present the results from the configuration we finally settled on,

which is a 2 mm thick PPLN crystal in both stage 1 and stage 2, and we chose to

discard the idler between stage 1 and stage 2. The simulation results indicated that

1.9 W of signal and 0.8 W of idler would be generated in stage 1, and 18.7 W of

signal and 8.3 W of idler would be generated in stage 2. The power build up vs. z

in both stages of the OPA is shown in figure 2.3

We estimated that approximately 365 nm of idler bandwidth can be sup-

ported by a 2 mm thick PPLN crystal according to formula 2.31 from [49].

∆ν =
2
√

ln2
π

√
Γ

L
1∣∣∣ 1

vgs
− 1

vgp

∣∣∣ (2.31)

where,

Γ
2 =

2d2
e f f ω1ω2

c3ε0n1n2n3
I3 (2.32)

and the pump intensity I3 was taken to be the damage threshold of the crystal

10 GW/cm2. For QPM de f f = 2/π d33 where d33 is the dielectric tensor element

[34]. From this formula, which is plotted in figure 2.4, it is evident that the crystal



CHAPTER 2. OPA SIMULATION 40

Figure 2.3: Simulation of the power build up in the pump, signal, and idler vs.
crystal propagation length z, for stage 1 and stage 2 of the OPA, with 2 mm
crystals in both stages. The signal-pump time delay was optimized independently
for each stage in order to maximize the idler power output at the end of stage 2. In
between stage 1 and stage 2 (dashed line) the idler is dumped and the pump is
increased to 48 W.

length and group velocity mismatch (GVM) are the chief limiters of attainable

bandwidth. This is why two crystal thicknesses, 1 mm and 2 mm, were considered

in order to find a balance between large bandwidth and obtainable power. However,

in the end we discovered that the limitation on the idler bandwidth is not due to

GVM, but rather caused by the signal seed pulse not entirely temporally overlapped

with the pump within the PPLN crystal. Therefore we ultimately decided to use a

2 mm thick crystal in stage 2, which maximized the power output of the OPA.
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Figure 2.4: Estimated idler phase matching bandwidth vs. crystal length, which
indicates that the 2 mm thick crystal can support 365 nm of idler bandwidth.



42

3. OPA

3.0.1 Design and Performance

Figure 3.1: Schematic of the two stage OPA. Pump and signal branches are
derived from an Er:fiber oscillator are amplified in separate Er:fiber (EDFA) and
Yb:fiber (YDFA) amplifiers. Difference frequency generation in two
periodically-poled lithium niobate crystals (PPLN1 and PPLN2) generates the high
power signal and idler combs. Path-length stabilization is achieved by heating the
fiber in the signal branch with a nichrome heater wire. Translation stage TS1
controls the pump/signal delay in both OPA stages, with TS2 changing only stage
2. More details in the text.

In this section, we present a 2.9 µm frequency comb based on high-power

DFG in a two-stage OPA, operating at 100 MHz repetition rate with 6.7 W average
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power and 100 fs pulse duration. To our knowledge, this is the highest power

mid-IR optical frequency comb reported to date and among the highest average

power ultrafast mid-IR light sources in general. Furthermore, we demonstrate that

this OPA can generate sufficient bandwidth to support few-cycle mid-IR pulses

with further refinement of the seeding signal branch.

A schematic of our design is shown in figure 3.1. The pump (1035 nm) and

signal (1500-1650 nm) are both derived from an all polarization-maintaining (PM)

fiber Er:fiber oscillator (Menlo Systems M-comb ultralow noise variant) with a

center wavelength of 1560 nm. In addition to convenient pulse synchronization,

deriving both pump and signal combs from the same oscillator ensures the idler

comb generated via DFG has f0 = 0.

The pump branch uses an intricate yet robust chain of nonlinear fiber optics

to shift the Er:fiber comb from 1560 nm to 1035 nm [75]. From the Er:fiber

oscillator, the light is bandpass-filtered (10 nm, BPF) and amplified in a nonlinear

Erbium-doped fiber amplifier (EDFA) incorporating normal-dispersion Er-doped

fiber (1.5 m Er80-4/125-HD-PM, D ≈ -22 ps/nm/km, 80 dB/m absorption at

1530 nm) pumped by four 750 mW, 976 nm pump diodes. After a length of the

anomalous dispersion fiber after the EDFA (30 cm, D ≈ 18 ps/nm/km), sub-50

fs pulses with 350 mW average power enter a 3 cm long piece of anomalous

dispersion (D = 5.6 ps/nm/km, γ = 10.5 W−1km−1, OFS Specialty Photonics)

highly nonlinear fiber (HNLF) directly spliced to the anomalous dispersion fiber.

Dispersive wave generation in the HNLF gives a comb with ∼15 mW of power

between 1000 and 1100 nm. All components of this fiber assembly are polarization



CHAPTER 3. OPA 44

maintaining (PM) for excellent long-term stability. The output of the HNLF is

subsequently amplified to 200 mW in a nonlinear, single-mode fiber, core-pumped,

Yb-doped fiber amplifier (YDFA) and stretched to ∼100 ps using an anomalous

third-order dispersion fiber stretcher [43]. This light is then used to seed a two

stage high-power chirped-pulse YDFA system previously described in [43], giving

up to 55 W and 180 fs pulses after grating-pair compression.

Figure 3.2: OPA path length stabilization mechanism which corrects for the
thermal drift in the high power pump arm. 1) Homemade PZT fiber stretcher,
driven by a lock in amplifier (LIA) via a high voltage PZT amplifier, modulates the
signal pulse in time a at rate of 1 kHz. 2) Photodiode detects the power modulation
in the amplified signal light. 3) LIA generates an error signal. 4) Embedded
controller integrates the error signal and sends a control voltage to a power
amplifier. 5) 1 m of Nichrome wire tapped directly to the Erbium doped gain fiber
increases the signal delay to compensate for the thermal drift of the pump arm.

The signal branch is comparatively much simpler. A similar nonlinear

EDFA is used, but with a longer 75 cm single-mode anomalous-dispersion fiber

spliced to its output. This provides 290 mW and the complicated spectrum shown

as the green curve of figure 3.3c) for seeding the OPA. The total optical path length

difference of ∼20 m between the two branches, with high-power fiber amplifiers in
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both arms of the interferometer, is subject to long-term thermal drift. To stabilize

the delay between the pump and signal at the OPA, the signal branch is equipped

with two actuators (figure 3.2). A piezoelectric fiber stretcher, driven with a 1071

Hz 20 V amplitude sine wave, modulates the signal seed delay by approximately

1 fs, which results in 0.1% amplitude modulation on the output of the OPA. This

amplitude modulation is detected with a photodiode and a lock-in amplifier (LIA

PD) to give an error signal. The error signal is integrated using a micro-controller

which controls heating current sent to 1 m of nichrome wire kapton-taped directly

to the EDFA gain fiber. A current of ∼1 A increases the fiber temperature by

approximately 30◦ C, and gives 1.1 ps of delay. With this setup, the path length

can be stabilized indefinitely after an initial warm-up period.

Optical Parametric Amplification is done in two stages using 5%-MgO-

doped periodically-poled lithium niobate (PPLN). A 2 mm long PPLN crystal,

with a poling period of 30.49 µm, was ultimately chosen for both stages, but we

report results with both 1 mm and a 2 mm long crystals for PPLN2. The crystals

are heated to 80◦ C to optimize phase matching and avoid photorefractive damage.

Two stages offers several advantages for the high-power OPA. First, as discussed

by Arisholm et al. [5], it is generally easier to achieve good beam quality in high-

gain OPAs with multiple stages. Second, independent control of the pump/signal

delay in each stage (via the translation stages shown in figure 3.1) allows partial

compensation of the pump/signal group velocity walk-off in stage 1. The pump

power of each OPA stage is independently adjustable using a combination of a half

wave plate (HWP) and thin film polarizer (Pol.). With 55 W from the YDFA, up to
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7 W and 48 W can be used to pump stages 1 and 2 respectively. The pump light is

focused to spot sizes of 78 µm and 161 µm (FWHM) in stage 1 and 2, respectively.

The signal beam in each stage is focused to the same size as the pump. We have

not observed crystal damage over several months of operation. 1

Figure 3.3: a) and b) Normalized stage 2 idler power and idler spectrum vs.
pump-signal delay τ. Positive τ indicate that the pump is arriving after the signal.
c) Spectrum of the pump, signal seed, signal output, and idler output of the OPA at
τ = 0. The two idler spectra shown are for 1 and 2 mm PPLN crystals in stage 2.

Figures 3.3a) and 3.3b) show the OPA output power and idler spectrum

as the pump/signal delay, τ , for both OPA stages is varied using translation stage

TS1, showing multiple pulses emerging from the anomalous dispersion fiber. τ = 0

is taken to be the delay of highest idler power. Mid-IR spectra were acquired

using a scanning 1/3-m Czerny-Turner monochromator and liquid-nitrogen cooled

InSb photodetector. The highest output power is observed when the OPA output

spectrum is centered at 2900 nm, with the corresponding amplified signal spectrum
1The reader might notice that the beam sizes here are not exactly the same as reported in

the OPA simulation section. This is due to the difference between defining the beam width as
FWHM or w (1/e2 radius). The equivalency is 2w =

√
2/
√

log(2) ∗FWHM or approximately
FWHM = 1.177w.
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(orange curve of figure 3.3c) centered at 1600 nm. This well isolated pulse at τ = 0,

trailing the main 1550 nm pulse at τ =−200 fs corresponds to a Raman-shifted

soliton generated in the long anomalous dispersion fiber pigtail of the signal-branch

EDFA. Thus, despite the complicated temporal structure emerging from the simple

signal branch fiber assembly, clean soliton pulses can be isolated for amplification

in the OPA. For the rest of the paper, we present results recorded at τ = 0.

Figure 3.4: a) Stage 2 idler power vs. pump power for both 1 mm and 2 mm long
crystals. Dashed lines indicate the measured power after separating and
collimating optics. b) Spatial mode profiles of the idler and the signal at full power.
Vertical and horizontal profiles along lineouts intersecting the centroid are shown
in white.

When pumping the first stage with 7 W, more than 2 W of signal light and

900 mW of idler light emerge from PPLN1. Only the signal is retained between

stage 1 and stage 2. With 48 W pump power in stage 2, at the exit of PPLN2 there
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is 6.7 W of idler and 14.9 W of signal. Figure 3.4a) shows the idler output power

vs. stage 2 pump power. Curves are shown for both 1 mm and 2 mm long PPLN

crystals. The idler is isolated from the signal and pump via two dichroic mirrors

and collimated with an f=25 cm CaF2 lens. The dashed lines are the measured

power after these output optics and represent the usable idler power from the OPA,

while the the solid curves represent the output power corrected for the measured

25% losses in the output optics. With the current output optics, the 2 mm (1

mm) long PPLN yields 5 W (3.3 W) usable idler power after the dichroic mirrors.

Figure 3.4b) also shows the output spot profiles at high power, measured using an

additional 0.5x telescope and a microbolometer array camera. Despite the high

powers involved, excellent beam quality is observed in both the signal and idler

spatial modes.

Figure 3.5: a) Idler intereferometric autocorrelation for the PPLN2 = 2 mm thick
crystal. b) Intensity autocorrelation from low-pass filtering (red), which assuming a
Gaussian pulse shape, corresponds to a measured idler pulse duration of 96 fs.
Calculated autocorrelation (black) for a transform limited pulse with the spectrum
shown in figure 3.3c).

Figure 5.3a) shows an interferometric autocorrelation of the idler pulse,

measured using a Michelson interferometer with a 2-photon InGaAs photodiode
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detector. Figure 5.3b) shows the intensity autocorrelation obtained from low-

pass filtering the data. Assuming a Gaussian pulse shape, the measured idler

pulse duration is determined to be 96 fs (FHWM). The transform-limited pulse

calculated from the idler spectrum of figure 3.3c) has a FWHM of 78 fs. For

comparison with the experimental data, we also calculated the autocorrelation

that the transform-limited idler pulses would have produced, and this is shown in

dashed black.

Figure 3.6 shows the relative intensity noise (RIN) in units of dBc/Hz for

the idler output, signal output, pump, and signal seed, acquired with a multichannel

16-bit digitizer with analog anti-aliasing filters (Picoscope 4262). Analysis of the

corresponding time series data indicated that idler and signal noise are strongly

correlated, but uncorrelated from the noise of the pump and signal seed. Interest-

ingly, we observed the RIN levels to not depend strongly on the pump/signal delay,

in contrast to other recent reports [38, 56].

Figure 3.6: RIN for idler, signal output, pump, and signal seed.
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Finally, we address the current OPA bandwidth and what is attainable with

this platform. Figure 3.3c) shows the idler spectrum for either the 1 and 2 mm

PPLN crystals in the second OPA stage. The bandwidth obtained is nearly the same.

Similarly, the pulse duration measured with 1 and 2 mm crystals is also the same

within experimental error. This indicates that the bandwidth and pulse duration

are not limited by the the group velocity walk-off in PPLN2, but instead by the

fragmented signal seed pulse. Further evidence that the OPA can support much

larger bandwidths is seen in figure 3.3b), where output idler spectra are recorded as

the pump/signal delay is varied. Parametric gain is achieved over ∼ 400 nm (450

cm−1) of bandwidth with a single poling period and crystal temperature. To further

explore this, we modeled the OPA in one spatial dimension as a χ(2) three-wave

mixing of temporally-Gaussian pulses according to [50]. We applied the Fourier

split-step method to solve two sequentially and independently pumped stages

PPLN, with 25 fs transform-limited input seed pulses and 2 mm PPLN crystals in

both stages. The results of the simulation predict that >400 nm phase-matched

bandwidths supporting transform-limited pulses of less than 35 fs duration, or less

than 3.5 optical cycles, can be attained.

In this section we have presented the design and performance of a high-

power mid-IR frequency comb based on difference frequency generation. The

system has demonstrated the ability to produce 6.7 W of 2.9 µm idler light and

14.9 W of 1.6 µm signal light with excellent beam quality and measured idler pulse

duration of 100 fs. We have also shown that the OPA is capable of supporting larger

bandwidths and shorter, even few-cycle pulses, with further refinement of the seed
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branch. Very short 1550 nm pulses for seeding the OPA can be generated using a

similar nonlinear EDFA seed branch by using short normal dispersion HNLFs, as

in [71], and we plan to implement this in the future. With few cycle-pulses and

intrinsic CEP stability, this source is attractive for driving nonperturbative HHG

in solids, with the possibility of generating isolated attosecond VUV pulses at

high repetition rate via gating schemes [25]. The high-power signal beam offers

additional opportunities. Even with the current usable idler parameters of 5 W of

average power and 100 fs pulse duration, focusing to 6 µm (2λ ) FWHM would

yield peak intensities of 1.6×1012 W/cm2, sufficient to reach the nonperturbative

HHG regime in a variety of crystals [25]. We note that solid-state HHG at ∼100

MHz rate has recently been achieved using alternative high-power, but not CEP-

stable, mid-IR sources [42, 73]. Finally, using this high power DFG comb, we

have recently realized cascaded HHG in PPLN waveguides at 100 MHz for the

generation of broadband visible frequency combs [37], and in this work we have

also verified the coherence of the idler comb via heterodyne characterization of

its high harmonics. This OPA platform can also be used for tunable high-power

mid-IR comb generation if dispersive-wave generation is implemented in the signal

branch and the PPLN poling period tuned as in [50].
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4. PPLN Waveguide Experiment

4.1 Introduction

Developing broadband frequency combs, which are robust and fieldable,

is important to realizing the numerous applications of comb technology. High

harmonic generation (HHG) in periodically polled Lithium Niobate (PPLN) waveg-

uides is one promising means of generating frequency combs which span the

spectrum from the MIR to the UV [31]. Lithium Niobate’s excellent nonlinear

properties are owed to relatively large nonlinear susceptibilities, and further con-

finement in ∼ 100 µm2 waveguides enhances the conversion efficiency to the high

harmonics.

However, broadband phase matching is a challenge in Lithium Niobate

since the index of refraction varies greatly across the UV-VIS range. A well

established practice for phase matching χ(2) processes (SFG, SHG, DFG) is to

flip the deff vector at a period which has the effect of canceling the wavevector

mismatch between the two frequencies (refer to section 2.1 for a detailed discussion

of Quasi Phase Matching (QPM)). This principle can be extended to a continuous
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spectrum of frequencies by chirping the polling period [31, 37] so that all the χ(2)

processes, and all the harmonic central frequencies, are phase matched at some

point in the crystal. Because of PPLN’s large χ(2) susceptibility one might expect

this leading order of the expansion of the nonlinear polarization to dominate. If

this is the predominant HHG mechanism then one would expect the harmonics to

be built up from cascaded χ(2) processes beginning with SHG of ω0 making 2ω0,

then SFG of 2ω0 and ω0 making 3ω0, and so on and so forth. For a 3 um pump

all the possible ways to make harmonics up to the 9th (333 nm) are enumerated in

figure 4.1.

However, cascaded χ(2) processes are not the only physical mechanism

known to make harmonics in crystals. Two other pathways which have been offered

to explain HHG in crystals stem from perturbative χ(n>2) and non-perturbative

physics [26, 41]. Therefore, in an effort to answer the question "by what mecha-

nism is the light generated in PPLN waveguides?" we offer a comparison of two

experiments—Hickstein et al. (4.1 µm pump, 1 MHz rep rate, < 25 nJ pulse en-

ergy) [31], and our own (3 µm pump, 100 MHz rep rate, < 12 nJ pulse energy)—to

a simulation which solves the broadband nonlinear envelope equation for optical

pulses in χ(2) media [19]. Understanding the harmonic generating mechanism in

chirped PPLN waveguides can illuminate pathways for optimizing these waveg-

uides in the future.

We find, in the case of the 4.1 um experiment, cascaded χ(2) processes

explain the experimental spectrum—showing good qualitative agreement, and

predominately quantitative agreement in harmonic conversion efficiency and power
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Figure 4.1: Enumeration of the cascaded χ(2) effects which illustrate the possible
harmonic pathways we are hypothesising dominate HHG in PPLN waveguides.

scaling in the low and high pump power limits, and saturation of the harmonics.

The 3 um experiment also shows consistency with a cascaded χ(2) model, however

there remains a discrepancy in the conversion efficiency to the high harmonics.

4.2 Experiment

Figure 4.2 shows the setup for the PPLN waveguide experiment. The

elements are a home-built high power mid-infrared OPA frequency comb pump

(see section 3), 5 PPLN waveguides with varying chirp profiles, and a scanning

monochromator to spectrally resolve the output light. The OPA DFG’s 1035 and

1550 nm light in 2 stages of PPLN, and is capable of generating 6.7 W of 3000
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Figure 4.2: 1. High Power OPA is used to pump the waveguide at up to 1.2 W (12
nJ). 2. Microscope objective was used to couple into the waveguide with 60%
efficiency. 3. Periodically polled Lithium Niobate waveguide (PPLN), with a
chirped polling period, on top of a Lithium Tantalate substrate. UV-VIS
Monochromator calibrated to absolute power. 5. White light from the waveguide
sent through a prism and onto a screen makes the harmonics clearly visible.

nm light at a repetition rate of 100 MHz with 100 fs pulse duration. The pump is

coupled into the waveguide via a chalcogenide (industry name Black Diamond)

microscope objective. Due to losses in the optics form the OPA to the waveguide

the maximum power that could be coupled into the waveguide is 1.2 W (12 nJ

pulse energy) 1. The waveguides are manufactured by NTT Electronics America

from ZnO doped Lithium Niobate, are approximately square 15 x 16 µm x 25 mm

long, and are ridged atop Lithium Tantalate. The ZnO provides a resistance to

photorefractive damage [53]. Five waveguides were tested with up-chirp polling

11.2 W was figured by measuring 2 W before the waveguide coupling optics and then assuming
a 60% coupling efficiency. 60% coupling efficiency measured by the transmitted power through the
waveguide at low power. Since the beam quality remains good at high power, it’s reasonable to
assume the coupling efficiency at low power can be extrapolated to high power.
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(decreasing period) in the "forward" direction, and their profiles are given in figure

4.17 in the methods section of this report. The polarization of the incident light

was set to vertical to be along the extraordinary axes of the crystal, this gave a

de f f = 19.6 pm/V. The output light of the waveguide was spectrally resolved using

a McPherson 0.3 m, Czerny–Turner style, UV-VIS monochromator with a UV

enhanced Aluminium grating blazed for 300 nm. The monochromator was actuated

via a stepper motor with a microcontroller, and the wavelength axis was calibrated

using the spectral lines from a Mercury lamp. The detector is a silicon photodiode

(adequate, but not ideal, for 9th harmonic at 333 nm) which is amplified via a

Stanford Research Systems (SRS) transimpedance amplifier. Typical photocurrents

were in the range of 500 nA. The response vs. wavelength of the entire system was

calibrated using the broadband spectrum from a Xenon-Meurucry lamp, and the

dynamic range of the systems was determined to be 23 dB. The absolute response

was calibrated by comparing the integrated power in the 6th harmonic to a power

meter measurement of the absolute power in the 6th harmonic spectrally filtered

using a prism.

4.3 Results

We measured the spectrum from each of the five waveguides when pumped

with 1200 mW (12 nJ pulse energy) in the forwards direction for waveguides 1, 2,

4 and 5, and backwards for waveguide 3. We also did a power scan of waveguide

5, and recorded the spectrum at various powers ranging from 1.8 mW to 12 mW.
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Figure 4.3: Power spectral density vs. frequency comparison between all five of
the waveguides when pumped at 1200 mW. All waveguides were pumped in the
forward direction (decreasing polling period) except for waveguide 3 which was
pumped backwards (increasing polling period). Each spectrum has been
separated by 15 dB for clarity. Conversion efficiency to the harmonics vs.
frequency with the dots giving the integrated power in the harmonics which has
been normalized by dividing by the pump power.
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Figure 4.4: Waveguide 5 power spectral density vs. frequency, conditioned on 6
pumping powers ranging from 180 mW to 1200 mW. Each spectrum has been
separated vertically by 20 dB for clarity. Conversion efficiency as a function of
frequency is shown for the harmonics
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The results are shown in figures 4.3 and 4.4 respectively. For specific details about

the calibration of the measurement apparatus refer to the methods section. In both

cases approximately 23% total conversion efficiency to the harmonics was achieved.

We measured this power by using a fused silica window (with approximately 2

µm cutoff) to filter out the 3 µm pump light. In the waveguide scan (figure

4.3) it would appear that there is little variation between waveguides, with the

exception of the reduced amplitudes of harmonics 6 and 7 in waveguide 2 and 3.

The similarity between the spectra recorded when pumping the waveguides in the

forward direction is consistent with the results from Hickstein et al. [31], where

it was observed that only in the backwards pumping direction the waveguides

showed a prominent difference. The cause of the missing harmonics 6 and 7

remains unknown. Perhaps a more detailed harmonic pathway analysis than what

is covered in this thesis could track down the source of the missing harmonics.

The power scan of waveguide 5 is shown in figure 4.4 for power levels

from 180 mW to 1200 mW. Each spectrum has been separated vertically by 20 dB

for clarity. The spectral line shapes show some difference between high and low

power scans, and this is confirmed by the conversion efficiencies plot. Specifically,

the odd harmonics are more pronounced at low power, and the even harmonics fill

in as the power is increased. Furthermore, as the power is increased, the harmonics

appear to broaden and fill in, and harmonic 5 shows significant enhancement over

the other harmonics.



CHAPTER 4. PPLN WAVEGUIDE EXPERIMENT 60

4.3.1 4.1µm Pump Experiment Analysis

We simulated χ(2) interactions using the broadband nonlinear envelope

equation in quadratic media given in [19]. A detailed discussion of this is given at

the end of this section. The input to the simulation is the transform limited 3 µm

pump, or a 200 fs sech2 pulse in the case of the 4100 nm simulation. The dispersion

curve was calculated via COMSOL [52], which shows small variation from bulk

PPLN in the IR due to waveguide dispersion, and the UV and IR absorption of

Lithium Niobate was added. The nonlinear scale terms were calculated using the

material properties of Lithium Niobate. The simulation was run at various pulse

energies for all five waveguides and in both waveguide directions. Additionally,

simulations were run to explore the effect of removing χ(3) from the model, and

varying the chirp of the input pulse. In order to account for uncertainty in the

nonlinear scale factors, all the comparisons between the simulation and experiment

have been normalized to focus on the relevant physical parameter—conversion

efficiency. For a more a more rigorous justification concerning why it is important

to compare conversion efficiencies see the methods section at the end of this

chapter.

This discussion will begin with a comparison of the simulation to the

Hickstein experiment, which pumped waveguides 1-3 at 4100 nm, 1 MHz, and 25

nJ max pulse energy. Figure 4.5 overlays two experimental waveguide 2 spectra

(forward polling direction) pumped at high power (25 mW, 25 nJ pulse energy) and

low power (5 mW, 5 nJ pulse energy), overlaid with their respective simulation runs

nearest the conversion efficiency observed in the experiment. The y-axis has been
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Figure 4.5: Plots of normalized power spectral density (PSD) comparing the 4100
nm experimental spectrum, from waveguide 2 (forward polling direction), recorded
by Hickstein et al. at two pulse energies—25 nJ (upper) and 5 nJ (lower)—vs. our
simulation. The y-axis was normalized by dividing by the input pump peak power,
therefore the plot shows harmonic conversion efficiency. The simulation pulse
energy was chosen to be closest to the experimental conversion efficiency.
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Figure 4.6: Comparison between the 4100 nm experiment performed by
Hickstein et al. and the simulation for waveguide 2 in the backward polling
configuration. The normalization of the y-axis was performed in the same way as
in figure 4.5. Evidently pumping waveguide 2 in the backward direction results in a
dramatically different spectrum than the forward direction, which was shown in
figure 4.5 The cascaded χ(2) model shows agreement with the features of the
experimental spectrum. The conversion efficiency plots show a discrepancy
between the simulation and experiment most prominently for harmonic 6.
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Figure 4.7: Waveguide 2, 4100 nm simulation, exploration into the harmonic 6
pathways. The top plots show the higher orders of the waveguide 2 polling period
vs propagation axis z, in the forwards and backwards direction (bold black), with
the phase matching polling periods for DFG and SFG which generate harmonic 6,
overlaid (colored horizontal lines). The bottom plots show the normalized
integrated power in harmonic 6 vs. z, and the vertical dashed lines show the
locations of the phase matching solutions (SFG (red), and DFG (black)). There
are locations where we would expect there to be buildup in harmonic 6.
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normalized by dividing by the input pump peak power (i.e. the input fundamental

peak value would be "0" on this plot), therefore the spectra show conversion

efficiency to each harmonic. This normalization is necessary to directly compare

the simulation to the experiment. It is apparent that there is good qualitative

agreement between the simulation and the experiment. In both the high and low

power limits, the simulated spectra follow the smooth experimental spectrum

of even and odd harmonics, showing similar buildups and peaks and valleys of

harmonics. The fact that it is possible to generate a smooth, and relatively flat (i.e.

not "jagged"), harmonic spectra with a cascaded χ(2) mechanism is contrary to the

suggestion made in Hickstein et al. They argue that a smooth spectrum, of even and

odd harmonics is indicative of a phase-mismatched perturbative χ(n>2) generating

mechanism, which has been shown to be numerically consistent with the observed

HHG spectra from ZnO and ZnSe. The conversion efficiency to harmonics 5 and

6 are enhanced in the simulation relative to the experiment. While the source of

this is unknown, a possible explanation could be the chirp of the input pulse. The

sensitivity of simulation runs to spectral phase suggest the experiment is dependent

upon the exact chirp of the pump. We did attempt to explore this parameter by

applying the spectral phase which would be accumulated by an initially unchirped

pulse propagating though 3 mm CaF2 and 1 mm Black Diamond (−726 f s2 total).

However, the chirp accumulated by these optics alone could not explain the source

of the discrepancy.

The argument that our cascaded χ(2) model qualitatively matches the ex-

periment is made stronger when one compares the waveguide 2 forward polling
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Figure 4.8: Frequency vs. time delay spectrogram of the 4100 nm experiment,
waveguide 2 backwards direction, in a reference from moving at the group velocity
of the pump, and taken at z = 17.25 mm. Positive time delays indicate events which
happened in the past. The entire frame is moving to the left in the window at the
group velocity of the pump. The bottom plot shows the harmonic power in dB vs.
time for the SFG of harmonics 2+4 = 6, and was constructed by integrating the
spectrogram. A clear spike is evident in harmonic 6 where harmonics 2 and 4
overlap in time.
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direction to the backwards pumped direction (figure 4.6). The backwards pumped

waveguide spectrum shows an enhancement of the even harmonics when compared

to the smooth spectrum of even and odd harmonics, which was observed in the

forwards pumping direction. The simulation captures this change well. However,

the integrated conversion efficiency plots indicate that in both pumping power

regimes (enhanced at high pump power) the simulation over overestimates the

conversion efficiency to harmonics 8, and underestimates harmonic 6.

It is interesting to examine the curious case of harmonic 6. One could

ask the following question, why does QPM cause a dramatic difference in the

conversion efficiency of harmonic 6, simply from flipping the waveguide direction?

One might expect the harmonic buildups in the forwards and backwards waveguide

direction to be a mirror images of one another, and ultimately resulting in the

same power in harmonic 6 by the end of the waveguide. Understanding the

answer to this requires correlating the buildup of harmonic 6 to the phase matching

of SFG and DFG processes which generate it. Figure 4.7 (top plots) show the

higher orders of the polling period profile vs. the crystal propagation length z,

in both the forwards and backwards orientation. Horizontal lines indicate the

polling period at which the SFG and DFG processes are phase matched. In other

words, the horizontal lines are the values of the polling period Λ which solve

∆k = k1+k2−k3+n2π/Λ = 0 (SFG) and ∆k = k3−k2−k1+n2π/Λ = 0 (DFG).

Where n is an integer indicating the polling period order. The intersections between

the horizontal lines and the waveguide polling profile are locations in z where that

process is phase matched. These intersections are projected on the bottom plots
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and shown as vertical dashed lines. They have been labeled with their process, and

color coded according to DFG (black) and SFG (red). Overlaid is the integrated

power in harmonic 6 (normalized to the initial pump).

It’s immediately clear that the buildup of harmonic 6 in the forward vs

backward waveguide direction are not mirror images of each other. In the forward

waveguide direction harmonic 6 blows up by 30 dB in the last 5 mm of the crystal,

while in backward direction harmonic 6 builds up at first and then trades its energy

to the other harmonics in the middle of the crystal, and then builds up again at the

end. The phase matching solutions show that there are many more DFG pathways

to make harmonic 6 than SFG, but in order for these DFG pathways to contribute

there must be adequate power in the higher harmonics. Because the majority of

the DFG solutions occur late in forward waveguide direction, there is adequate

propagation for the higher harmonics to build up power, and thus when the DFG

processes are phase matched at the end of the crystal the buildup of harmonic

6 is dramatic. Compare this to the backward waveguide direction which shows

mediocre buildup of harmonic 6 at the start of the crystal because the power in

the higher harmonics is low. Consequently, any power which has build up in 6 is

traded back to the other harmonics midway thorough the crystal and finally toward

the end harmonic 6 gets a big boost from the SFG of harmonics 2+4.

There is another key element which must be considered, the temporal

overlap of the harmonics at the location where the process are phase matched. Let’s

start with the backwards waveguide direction case, and consider the location in z

where SFG of harmonic’s 2+4 are phase matched. Obviously 2 and 4 will only
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Figure 4.9: Frequency vs. time delay spectrogram of the 4100 nm experiment,
waveguide 2 forwards direction, at z = 25 mm. In this case the majority of the
power in the harmonics is generated at the end of the waveguide. Using this fact,
combined with the knowledge that only DFG processes are phase matched at the
end of the waveguide (figure 4.7) we can infer that in the forward polling direction
harmonic 6 is generated via DFG.
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SFG to 6 when they’re temporally overlapped. In order to investigate the time

domain picture we construct a spectrogram which plots frequency vs. time delay,

and shows the temporal delay between the harmonics at a location in z≈ 18 mm

(which I chose by noting the z location where 2+4 were phase matched in figure

4.7). The spectrogram was constructed by Short-time Fourier transform (STFT)

filtering with a Blackman-Harris windowing function (500 fs window) which gives

approximately 100 dB of dynamic range. The spectrogram and the integrated

harmonic powers are plotted in figure 4.8. The time axis can be interpreted as

positive delay are in the past, and all the harmonics are moving to the left in the

frame at the group velocity of the fundamental. Examining the integrated harmonic

power, we notice that there is a spike in buildup of harmonic 6 (purple curve) right

where there is the strongest overlap between harmonics 2 and 4. This is expected.

The same logic can be applied to the forward propagation direction, which is

shown in figure 4.9. In this case I chose to show the spectrogram at the end of

the crystal (z = 25 mm) because this is where the strongest buildup in harmonic 6

occurs. From the integrated harmonic power plot we notice that the majority of the

power in all the harmonics is generated at the end of the crystal, which means they

don’t have time to walk off because of group velocity mismatch. Hence they’re

temporally overlapped, and simultaneously phase matched for DFG, resulting in

the expected buildup of harmonic 6 at the end of the crystal.

With an interest in designing a waveguide in mind, we can think about

what feature in the polling profile leads to strong buildups of the harmonics. What

the "curious case of harmonic 6" suggests is that it’s the "hook" in the waveguide
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polling (i.e. where the polling period varies rapidly, like at the end of waveguide

2, forward direction), which generates all the harmonics at once. And that would

make sense, because the rapid variation in the polling means more SFG and DFG

processes are phase matched within the temporal overlap window, before group

velocity walk off separates the harmonics in time.

While one could proceed with the pathway analysis, and granted there is

some physical intuition to be gained, there is not always a clear way to decouple the

simulation into individual harmonic pathways. Therefore, the focus of this analysis

will return to macroscopically comparing the simulation to the 4100 nm pump

experiment and then the 3000 nm pump experiment. In figures 4.5 and 4.6 I chose

to overlay the 4100 nm experiment with the simulation run which most closely

matched the harmonic conversion efficiency. However, there are many level curves

corresponding to all combinations of simulation and experimental pump powers

and it’s potentially interesting to look for trends. Figure 4.10 shows the conversion

efficiency to harmonics 3 – 11, for experimental pump powers ranging from 0.4

mW to 22 mW, with simulations (dashed lines) ranging from 0.1 mW to 14 mW

overlaid. We observe the simulation conversion efficiencies match some of the

experimental harmonics, but not all simultaneously. Specifically, the simulation and

experiment agree best for harmonics 3, 5, 7, 9 (odd), than for the even harmonics.

For the even harmonics, the simulation conversion efficiencies are slightly high for

harmonic 4 and extremely high for harmonic 8, and extremely low for harmonic

6. Furthermore, the experiment shows an enhancement of the even harmonics

at low power, but this tends to wash out at high power. The simulation does not
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capture this washing out feature and still shows an enhancement of harmonic 4 and

harmonic 8, and a reduction in harmonic 6 even at high pump powers.

Another way to view the parameter space is to project the conversion

efficiency of each harmonic onto the pump-power axis. Figure 4.11 plots the

experiment vs. simulation conversion efficiency to harmonics 3 - 11 as a function

of pump power. The simulation had to be run with lower pump powers in order

to match the conversion efficiency of the experiment. Therefore, to compare

simulation to experiment on the same power axis (x-axis) the simulated pump

powers need to be scaled up. In this case we scaled the simulated pump power

up to a Pequiv
sim = 2.0Psim (i.e. x-axis transform) and then calculated the conversion

efficiency according to the formula Pharm/Pequiv
sim (y-axis transform). The scale

factor was determined to be 2.0 by optimizing the numeric agreement between the

experimental and simulation slopes in the low pump power regime. This is the

metric that I chose to optimize. For a justification of this scaling see the methods

section at the end of this chapter.

We observe agreement between the slopes of the simulation curves and

the experimental data in the low pumping power regime for harmonics 3, 4, 5,

7, 8, 9, and 11. But harmonics 6 and 10 have a Camel back feature, which

steepens the local power scaling law, and diverge from the simulation. The slope

of the experiment data is shown as dashed lines. In the high pumping power

limits harmonics 3, 4, 5, 7, 8, 9, and 10 show consistent power scaling slopes

with the simulation. Harmonics 4, 5, 7, 9, 10, and 11 show consistent saturation

profiles, while harmonics 6 is predicted to be an order of magnitude lower by
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Figure 4.10: 4.1 µm conversion efficiency to harmonics 3 – 11 vs. frequency for
waveguide 2, backwards polling direction. The experimental power scans are
shown in solid lines and range from 0.4 mW to 22 mW of coupled pump power
and were taken from [31]. Overlaid (dashed) are simulations which range in power
from 0.1 mW to 14 mW. The bold black simulation curve at 10 mW is meant to
show that this power gives approximately the same conversion efficiency as 22
mW of experiment pump power.
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Figure 4.11: Conversion efficiency vs pump power for waveguide 2, backwards
polling. The 4.1 um experiment data is shown as solid lines and the overlaid dots
are the results of the simulation. Slopes have been fit to the experimental data in
the low power regime and show quantitative agreement with the simulation for the
majority of the harmonics. Additionally, the high pump power limit slopes, and
conversion efficiency saturation values are predominately consistent between the
experiment and the simulation. For the simulation the pump powers were
multiplied by 2.0.
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the simulation than we observe in the experiment, which is consistent with our

analysis of figure 4.10. Also, consistent with the analysis of figure 4.10 is that the

simulation overestimates the power build up in harmonic 8.

4.3.2 3 µm Pump Experiment Analysis

I chose to focus on analyzing the 4.1 µm experiment, because it is easier

to show consistency between that data and the simulation as compared to our

own 3 µm experiment. But we would expect that if cascaded χ(2) processes can

explain HHG in PPLN waveguides at 4.1 µm, then we would be able to also

show correlation between the 3 µm data and the simulation. Figure 4.12 plots

waveguide 5 conversion efficiency vs. frequency, for the 3 µm experiment, at pump

powers ranging from 150 mW to 1200 mW. Overlaid are simulation runs at powers

from 10 mW to 850 mW. The most apparent difference is that the experimental

conversion efficiencies shift vertically together with increasing pump power, while

the simulation shows a spreading out of the higher order harmonics. Consequently,

the simulation over predicts the conversion efficiency to harmonics 5-9. We have

thought that some of the power in the high harmonics has been generated into

higher order spatial modes of the waveguide, which could reduce the effectiveness

of QPM in the experiment. However, an examination into this possibility has

shown that the coupling strength into the higher order modes is weak. Combined

with the knowledge that the light output from the waveguide, when viewed on a

camera, appears to be a clean fundamental mode, it seems unlikely that higher order

spatial modes can account for the reduction in conversion efficiency to harmonics
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Figure 4.12: 3 µm, waveguide 5, forward direction polling, experimental
conversion efficiency (solid lines) vs. frequency, at power levels ranging from 150
mW (1.5 nJ) to 1200 mW (12 nJ), with simulation data (10 mW - 850 mW) overlaid.
The 1.5 nJ experimental data line is segmented because some of the harmonic
peaks were bellow the noise floor of the detector. The simulation shows a
spreading out of the harmonic conversion efficiency with increasing order which is
not evident in the experimental data.
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5 through 9.

Exactly the same as we did for the 4.1 um, we look toward the power scaling

of the harmonics vs. pump power for clues. Figure 4.13 plots the experiment

harmonic power scaling vs. pump power with the simulation data overlaid. The

same as in the case of the 4.1 um analysis, a scale factor was applied to the

simulation data in order to plot the conversion efficiency at an equivalent pump

power. However, in this case determining a single scale factor by which to transform

the x-axis is not straight forward as in the 4.1 um case, because there is less of

an agreement between the slopes of the experimental data and the simulation. I

chose a scale factor of 4 by attempting to align the slopes at the midpoint of the

curve. There is no expectation for this scale factor to be the same as in the case

of the 4.1 um experiment, because it includes biases like coupling efficiency into

the waveguide, which we measured for only 1 attempt at waveguide coupling2.

In figure 4.13 we observe that the slopes in the low pump power roughly agree

for harmonics 5-9. Additionally, the simulated conversion efficiency is consistent

with the experiment for harmonics 4 and 5, but the simulation overestimates the

conversion efficiencies to harmonics 5-9.

Attempting to explain these observation, we decided to explore the effect

of adding χ(3) to the simulation. The details of this new model are explained

in the methods section. Adding χ(3), including delayed Raman response and

instantaneous Kerr effect, can transfer energy from the light into vibrations of the

2We have observed discrepancies in the 3 µm and 4.1 µm data which suggest that coupling
into the waveguides may not be exceptionally repeatable. At this time I have not quantified this
potential source of error.
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Figure 4.13: Harmonic power scaling vs. pump power for the 3 um experiment,
compared to the simulation. Even though there is no experimental data for
harmonics 1-3 the simulation results are still plotted as to illustrate the predicted
saturation of harmonics 1-3. Harmonics 6, 7, 8, and 9 show a "convex profile"
which is not as pronounced in the simulation. Additionally, the simulation
overestimates the conversion efficiency to these harmonics
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Figure 4.14: Simulated conversion efficiency vs. frequency for waveguide 5,
pumped with 1.5 nJ, in the forward direction, for 3 different simulation models. The
first is χ(2)+χ(3) effects with a Raman fraction fR = 0.58. The second is χ(2)+χ(3)

with a Raman fraction fR = 0.2. And finally the "control" is shown which only
included χ(2) effects. While a minor reduction in the conversion efficiency to the
high harmonics is observed with the addition of χ(3) effects, this phenomenon
does not explain the overestimation of conversion efficiency observed in 4.12.
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crystal lattice (phonons) thus reducing the conversion efficiency to the harmonics;

and also in general influence the cascaded χ(2) mechanism. Figure 4.14 shows the

effect of adding χ(3) to the simulation by plotting harmonic conversion efficiency

for χ(2)+χ(3) effects with a Raman fraction fR = 0.58, χ(2)+χ(3) with fR = 0.2,

and χ(2) only. While the addition of χ(3) in the model does cause a slight reduction

in the harmonic conversion efficiency it is not significant enough to explain the

discrepancy observed between the simulation and experimental data. Most likely

this is due to the magnitude of the χ(3) term being significantly smaller than the

χ(2) term.

Despite what might not be considered strong numerical agreement there

still exists qualitative agreement. As a final cases in point, figure 4.15 overlays

of the experimental spectra from waveguide 5 with its simulation run. One final

interesting feature to observe in both cases is the simulation seems to favor the

larger lobe of the double peak input spectrum (see figure 4.16 in the Methods

section), and the resulting harmonics are shifted slightly left of multiples of the

99.5 THz fundamental center.

4.4 PPLN Waveguide Conclusion

This study attempted to answer the question, "by what physical mecha-

nism are high harmonics generated in chirped periodically polled Lithium niobate

(PPLN) waveguides?" Because of Lithium niobate’s strong χ(2) nonlinear response,

one would expect cascaded χ(2) process to dominate, however groups have reported
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Figure 4.15: 3 um experimental spectrum from waveguide 5, overlaid with the
simulation result illustrates qualitative agreement.
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characteristics in the spectrum, and the nature of the power scaling, to be indicative

of higher order perturbative process and non-perturbative physics. In order to shed

light on this subject, we performed our own experiment pumping at 3 µm, 100

Mhz, and 1.5 nJ to 12 nJ pulse energy. This section presented the results of that

experiment along with a re-creation of the data from a previous experiment on the

same waveguides pumped at 4.1 µm and 1 MHz, and compared them both to a

simulation which solves the generalized nonlinear Schrodinger equation with χ(2)

nonlinearity. We find agreement between the experiment and the simulation, and

conclude that cascaded χ(2) processes can explain the nature of the high harmonics

generated by PPLN waveguides.

4.5 Methods

4.5.1 The Simulation

In order to model the nonlinear interaction in this PPLN waveguide we

simulated χ(2) and χ(3) interactions using the broadband envelope equation given

in Conforti [19]. This equation was solved with an adaptive embedded Runge-

Kutta algorithm described in [7] and each run takes approximately 48 hours on a 4

core processor.
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Figure 4.16: Pump peak power vs. frequency. The centroid of the spectrum is
99.5 THz, and has a double lobe feature.

Input Parameters

The simulation is set up with the following initialization and input param-

eters. The time grid is 218 points, 120 ps wide, and has a resolution of 0.46 fs.

This gives a sampling rate of 2185 samples/ps and a frequency grid which extends

from minus to plus Nyquest frequency of 1092 THz, which is greater than the 9th

harmonic, and into the UV absorption edge of Lithium Niobate. The input time

domain envelope is constructed from the transform limited spectrum (figure 4.16)

measured at the time of the experiment, which is centered around 3012 nm. A

flat spectral phase is assumed. This pump pulse is normalized to units of
√

W so

that the envelope squared integrates to the pulse energy in [J]. The input pulse is

also shifted in time to -56 ps (advance in time) to allow for the group delay of the

harmonics.

The frequency dispersion model was constructed by fitting a Sellmeier
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Figure 4.17: Polling period for each waveguide as a function of the propagation
coordinate z [m]. Waveguides 1, 2 and 3 are smooth with hook like features at the
start and end, while waveguides 4 and 5 have a stair-step profile with sections of
constant polling.

equation to the real part of the index of refraction data calculated by COMSOL,

which adds in the effect of waveguide dispersion. This dispersion model showed

only slight differences from the bulk Lithium Niobate curve in the IR, which

is where we would expect the waveguide dispersion to have a stronger effect.

Absorption is accounted for in the simulation by manually entering the absorption

edges of Lithium Niobate in the IR and the UV at 310 nm, and the edges were

modeled as error functions 10 nm wide. The UV absorption edge is slightly bluer

than the the 9th harmonic at 334 nm.
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The nonlinear scaling terms for the χ(2) and χ(3) process are calculated

using Lithium Niobate’s de f f = 19.6 pm/V , intensity dependent index of refraction

n2 = 83.3e− 20 m2/W [6], an effective waveguide area of 108 µm2 (calculated

using COMSOL), and the central frequency of the pump pulse, f0 = 99.5 T Hz.

The poling period function of the propagation coordinate z [m], for each of

the five 25 mm long chirped waveguides, are interpolated from 4096 points supplied

by the manufacturer. These profiles are shown in figure 4.17. It is noteworthy

that there are two distinct styles of polling profile. Waveguides 1, 2, and 3 are

smooth but the polling period varies rapidly at the start and end of the waveguide.

Compare this to waveguide 4 and 5, which have flat sections of constant polling,

and generate harmonics more evenly throughout the crystal.

The initialization function returns the following parameters to the main

simulation application, the time t [ps] and frequency grids ω [rad/ps], initial time

domain electric field At[
√

W ], the nonlinear scaling values χ2
scale [1/(m

√
W )] and

γ [1/(m W)], the dispersion operator D [1/m] and the absorption profile α [1/m],

the waveguide polling period [m], and β0 [1/m] and β1 [ps/m].

ERK4(5) Solver

The main application calls the adaptive Embedded Runge-Kutta ERK4(5)

[7] function and passes it the initialization parameters. The ERK4(5) algorithm

propagates the differential equation and saves the frequency domain electric field

at 101 save points.

The ERK4(5) algorithm embeds a Split Step Fourier Methods (SSFM) into
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the coefficients of a 5th order Runge-Kutta solver with a 4th method embedded

within which is used to adapt the step size. The RK coefficients are solved in

the frequency domain by first applying the dispersion operator, inverse Fourier

transforming to the time domain and applying the nonlinear operator, then Fourier

transforming back to the frequency domain and applying dispersion operator again.

The 4th and 5th order solutions are inverse transformed into the time domain and

the absolute value of the difference between them is used to reject (accept) steps,

while decreasing (increasing) the step size until this difference is within some error

tolerance. The exact value of the error tolerance is unimportant, since the algorithm

independently monitors accumulated fractional error in the power in each of the

harmonics. We choose to accept total fractional errors <= 0.1. In order to achieve

this the algorithm must takes steps < 1e− 7 m (400000 total steps on average).

Since the algorithm must perform 28 Fourier transforms of 218 points at each step,

the simulation is computationally costly to run.

The nonlinear operator is derived from the broadband envelope equation for

χ(2) media given in [19], with additional terms to account for the periodic polling

period of the waveguide, and χ(3) effects including instantaneous Kerr effect, and

delayed Raman scattering. The broadband envelope equation for χ(2) media, given

by Conforti, which I showed how to derive in the introduction, is given in equation
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4.1.

∂A(z, t)
∂ z

+ iDA(z, t) =
−iχ2

4n0c
ω0

[
1− i

ω0

∂

∂ t

]
[A2eiω0t−ik0z +AS(|A|2)e−iω0t+ik0z]

(4.1)

Where the dispersion operator D = ∑
∞
m=2

1
m!βm

(
− i ∂

∂τ

)m
. And AS is the analytic

signal representation, which is used to filter the negative frequency components so

that an envelope, containing only positive frequencies , can be used to represent

a real electric field. However, this operation is not strictly necessary because the

negative frequency components cannot be phase matched, and consequently they

are suppressed by orders of magnitude. Therefore, calculating the analytic signal

in the frequency domain, which would require 14 more Fourier transforms for

every step of the algorithm, is unnecessary and the following approximation can

be made, AS(|A|2)≈ 2|A|2 Using this approximation, carrying out the derivatives,

and moving to a reference frame which travels at the group velocity of the pump,

yields the form of the equation which is propagated in the simulation of the 3 µm

and the 4 µm experiment,

∂A
∂ z

+ iDA =−i gP χ
(2)
scale(ω0)

[(
2A2− 2i

ω0
A

∂A
∂τ

)
eiω0τ−i(β0−β1ω0)z−

4i
ω0

Re
(
A∗

∂A
∂τ

)
e−iω0τ+i(β0−β1ω0)z

] (4.2)

And for the 3 µm data analysis, shown in figure 4.14, I chose to explore the effects
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of adding χ(3) nonlinearity to the model by simulating,

∂A
∂ z

+ iDA =−i gP χ
(2)
scale(ω0)

[(
2A2− 2i

ω0
A

∂A
∂τ

)
eiω0τ−i(β0−β1ω0)z−

4i
ω0

Re
(
A∗

∂A
∂τ

)
e−iω0τ+i(β0−β1ω0)z

]
− iγ(ω0)

[
1− i

ω0

∂

∂τ

](
(1− fR)A|A|2+

A
∫

∞

0
fRhR(t′)|A( τ− t′)|2dt′

) (4.3)

Where the χ
(2)
scale(ω0) =

1
2

de f f ω0

n3/2
0 c

√
2

ε0cAe f f
which is consistent with this simulation’s

units of the electric field
√

W , and was transformed using the relation |A′|2 =

1/2ε0n0cAe f f |A|2 [3]. And the polling sign gP = sign(cos(2π

Λ
z)) where Λ is the

polling period. And the χ(3) scale term γ = ω0n2/(cAe f f ) [3], with Raman fraction

fR = 0.58 or fR = 0.2 and the Lithium Niobate Raman response function hR(t)

given by experimental measurement [6]. In the ERK4(5) solver the nonlinear

function returns the right hand side of equation 4.2 or equation 4.3.

Making this simulation a computationally tractable problem requires paral-

lel computing. This was done in 2 different ways depending on the goal. For single

instances of the simulation the best course of action was to allow Matlab’s inherent

parallelization of Fast Fourier transforms to spread the computing load to all the

cores in a CPU. On a 4 core I7 processor, a single instance takes about 40 hours to

run. Alternatively, if a parameter search is required, many instances can be run in

parallel, while allocating 1 core in the CPU for each instance. This method was

utilized on a 16 core computer, and the run time is approximately 1 week.
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The Return Values of the Simulation

The simulation saves the frequency domain electric field envelope Aω [
√

W ],

its location along the propagation coordinate z [m], and the accumulated fractional

error in each of the harmonics, at 101 save points between 0 and 25 mm. The full

frequency grid is saved meaning the size of Aω array is (101,218). The units of

the frequency domain envelope are
√

W , which is the same as the time domain

envelope At because the Fast Fourier Transform, Aω = FFT (At), doesn’t multiply

by dt. The working units of the remainder of this analysis are [dBm/THz], so in

order to convert Aω the following operations are carried out. Assuming time and

frequency units of ps and THz, and the repetition rate of the laser is frep [Hz], the

spectral energy density E [J/Hz] is calculated from the raw simulation output by,

E = |Aω ∗dt ∗1×10−12|2 (4.4)

so that the pulse energy E pp [J]

E pp =
∫

∞

−∞

E ∗d f ∗1×10−12 (4.5)

and the power spectral density PSD [mW/T Hz] is

PSD = frep ∗E [J/T Hz]∗1000 (4.6)
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which can be integrated to obtain the total optical power PW [mW ]

PW =
∫

∞

−∞

PSD∗d f (4.7)

or used as the y axis units for the plots which will be shown in the following

analysis of the results in the form PSD [dBm/T Hz] according to,

PSD [dBm/T Hz] = 10∗ log10(PSD [mW/T Hz]) (4.8)

The ERK4(5) solver also returns the accumulated fractional error in each of

the harmonics, at each save point in z, which is calculated according to the formula,

Fractional Error =

∣∣∣∣∣ ∑
steps

∫
n |A

(5)
ω |2−|A

(4)
ω |2∫

n |A
(5)
ω |2

∣∣∣∣∣ (4.9)

Where A(5)
ω represents the 5th order Runge Kutta solution, and the integration is

performed over the bandwidth of the nth harmonic. For example, a simulation

run for waveguide 3 returned fractional errors which are mostly < 10−2, and are

shown in figure 4.18. Three elements are immediately noticeable. One, the error

get significantly worse as the harmonic order increases, because the harmonics are

generated by a cascaded process and so is the error. Second, the error appears to

be constant for harmonics 6, 7, and 8, which means all the error was accumulated

in the first few steps of the algorithm. Third, some of the errors decrease, which is

because |A(5)
ω |2−|A

(4)
ω |2 can be negative.
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Figure 4.18: Accumulated fractional error in the power in each harmonic as a
function of the propagation coordinate z.

4.5.2 Justification for Scaling the Pump Power axis in

the Simulation

Figures 4.11 and 4.13 plotted conversion efficiency vs. pump power and

figures 4.5, 4.6, and 4.15 show agreement between the simulation run at one pump

power, and the experiment pumped at a different power. I offered argument without

proof that it’s acceptable to re-scale the simulation pump power in this manor to

match the experiment. However, I feel compelled to rigorously justify this.

Rewriting the envelope equation 4.2, we get an alternate form of the equa-
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tion being solved by the simulation,

∂A
∂ z

+ iDA =−iχ(2)
scale(ω0)

[
1− i

ω0

∂

∂τ

]
[A2eiφ +2|A|2e−iφ ]− iγ|A|2A (4.10)

Where −iγ|A|2A term can be considered a proxy for the entire cubic nonlinear

terms in the right hand side of 4.3, which has been left out of the explanation which

follows for the purpose of brevity. Defining a unit-less normalized electric field by

dividing by
√

P0, where P0 is the peak power in units W ,

U =
A√
P0

(4.11)

And plugging this into equation 4.10 we find a differential equation for harmonic

conversion efficiency,

∂U
∂ z

+ iDU =−iχ(2)
scale(ω0)

√
P0

[
1− i

ω0

∂

∂τ

]
[U2eiφ +2|U |2e−iφ ]− iγP0|U |2U

(4.12)

This indicates that scanning the simulation pump power is equivalent to scanning

the nonlinear scale factor. We chose to parameter search by scanning pump

power, but we could have also conditioned on one pump power and scanned

χ
(2)
scale(ω0). Both approaches to calculating the harmonic conversion efficiency are

mathematically equivalent.

However, the conversion efficiencies to the second the third order processes
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don’t scale the same way with power. The conversion efficiency to the χ(2)

process is linear in
√

P0 and the conversion efficiency to the χ(3) term scales with

(
√

P0)
2. For all of the analysis presented this point inconsequential because we

only simulated χ(2). Except for the analysis presented in figure 4.12, where we

explicitly compare the effects of adding χ(3) to the model with different Raman

fractions. But in that figure we intentionally do not to include any experimental

data because "technically" it would not be correct to scale the simulation pump

power. I use "technically" in quotes because we have shown that the effect of

adding χ(3) is small, which is due to the fact that the magnitude of the cubic term

is orders smaller than the quadratic term.

Another way to compare the relative strength of χ(2) and χ(3) is by param-

eterizing the differential equation in terms of a characteristic length scale z′ = z/L,

where L = crystal length, we obtain,

∂U
∂ z′

=−iLDU− i
L

L(2)
NL

[
1− i

ω0

∂

∂τ

]
[U2eiφ +2|U |2e−iφ ]− i

L

L(3)
NL

|U |2U (4.13)

where we have defined separate nonlinear lengths for the χ(2) and χ(3) process,

given by equations 4.14 and 4.15, which is simply an alternate parameterization to

quantify the relative significance of the two factors,

L(2)
NL =

1

χ
(2)
scale(ω0)

√
P0

(4.14)
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and,

L(3)
NL =

1
γ(ω0)P0

(4.15)

Plugging the numbers in for a 3 µm, 3 nJ, pulse, we find L(2)
NL = 190 µm and

L(3)
NL = 1.8 mm. Since L(2)

NL << L(3)
NL. This is consistent with our simulation data

that shows χ(3) effects play a small role in HHG in PPLN waveguides.

4.5.3 Detector Details

Figure 4.19: Spectrum from the Monochromator and the Ocean Optics
Spectrometer vs. Wavelength when viewing a Mercury Lamp, which was used to
calibrate the wavelength axis.

The monochromator used to spectrally resolve the harmonics is McPherson

0.3 m, Czerny–Turner style, UV-VIS monochromator with a UV enhanced Alu-

minium grating blazed for 300 nm. The sine drive is actuated via a stepper motor,

which is controlled using an Arduino microcontroller that reports to a computer
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every time the motor steps. The position of the mechanism is tracked by recording

the starting position manually and then the software will count steps from that

known location. The monochromator has a wavelength indicator, which was cali-

brated using a HeNe, for the purpose of knowing approximately the wavelength

being measured and returning the instrument to its known starting location. The

monochromator drive proved to be extremely consistent, and the accumulated error

from running the instrument 500k steps forward and backwards was less than 1

nm. The detector was a silicon photodiode, which was amplified by a Stanford

Research Systems (SRS) transimpedance amplifier and typical gain settings were

200 nA/V. The resolving power is λ/∆λ = 840 at 546 nm. The dynamic range

was determined to be 23 dB by measuring a HeNe laser with Monochromator and

the SRS amplifier gain set to typical values.

Figure 4.20: Spectrum from the Monochromator and the Ocean Optics
Spectrometer vs. Wavelength when viewing a Xenon-Mercury Lamp, which was
used to calibrate the relative amplitudes between the peaks.
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The calibration of the wavelength axis was accomplished by comparing

a Mercury lamp spectrum to the same spectrum measured by an Ocean Optics

spectrometer, and then scaling the wavelength axis of the monochromator until the

peaks lined up. We found the correction needed was only 0.6 nm. An overlay of

the Mercury lamp spectrum used for calibration is given in figure 4.20.

The relative (wavelength dependent) response of the grating and the sil-

icon photodiode system was calibrated using the broadband spectrum from a

Xenon-Mercury Lamp. Three different calibration methods were tried, which

included matching of the peaks between the Ocean Optics Spectrometer and and

the monochromator, calibrating to the area under the peaks, and calibrating to the

broadband background. We chose to use the broadband background calibration,

which is shown in figure 4.20.

The absolute calibration of the monochromator was done by integrating the

6th harmonic in the experimental spectrum, and then scaling the experimental curve

by a factor of C [mW/(A*nm)] until there was agreement with the power in the 6th

harmonic—as reported by a calibrated photodiode which was observing only the

6th harmonic. This was accomplished by dispersing the waveguide output light via

a prism (Fresnel loss was considered), spatially filtering via knife edges, and then

focusing the 6th harmonic into the photodiode. Additionally, power scaling of the

monochromator was checked by making sure the power in the 6th harmonic curve

vs. pump power matched the photodiode. This curve is shown in figure 4.21.
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Figure 4.21: Absolute power in the 6th harmonic vs. pump power as measured
by a power meter compared to the integrated monochromator signal after a
calibration constant of C [mW/(A*nm)] was applied
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5. Next Generation OPA Signal Seed

5.1 High Fidelity Modeling of Gain in Erbium

Doped Fiber Amplifiers

Figure 5.1: Concept drawing of the key elements of the next generation EDFA
system intended to generate 30 fs pulses to seed the OPA. 1) 60.5 MHz
Frequency Comb manufactured by Menlo systems. 2) 10 nm bandpass filter,
centered around 1550 nm helps to reduce pulse broadening in the time domain by
narrowing the spectrum. 3) Erbium doped gain fiber is the active amplification
element. 4) A variable length of anomalous dispersion PM 1550 fiber serves as
the compression fiber for a normally chirped pulse. 5) A maximally compressed
pulse is launched into a Highly Nonlinear Fiber (HNLF) which generates a broad
bandwidth. 6) The broad bandwidth is compressed via variable thickness,
anomalously dispersive fused silica wedges into a ∼ 30 fs pulse which seeds the
OPA.
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One of the key points of the section on the OPA development was that

achieving short 3 µm pulses (∼ 30 fs, 3 optical cycles) is currently being limited

by the temporal compression of the signal seed. Since MIR pulses are essential

for developing the OPA into a light source for generating attosecond pulses, it is

a priority that we upgrade the signal to seed the OPA with broadband temporally

compressed pulses.

To that goal, the key elements of the next generation EDFA system are

illustrated in Figure 5.1. This design is intended to seed the OPA with broadband

pulses that are maximally compressed in time, so that the entirety of the bandwidth

is co-temporal with the 1035 nm pump light in the OPA. This is crucial to generating

broadband 3µm idler pulses, and realizing the full performance potential of the

OPA. It has been shown that this EDFA design can produce pulses as short as 10 f s

(FWHM) [71] with 800 nm of bandwidth. And while that is significantly greater

bandwidth than can be theoretically phase matched in the OPA, it’s interesting to

consider (and aim for) seeding the OPA with an ultrabroaband pulse.

In the interest of focusing on the element of the EDFA system with most

novel scientific impact, this section reports on a newly developed model for a high

rep rate (∼MHz) nonlinear Erbium Doped Fiber Amplifier (EDFA) pumped at 980

nm and seeded at 1550 nm. Specifically, this section focuses on the 1.5 m segment

of Erbium doped gain fiber (element 3 in figure 5.1), which is the active component

of the signal seed branch of the OPA. Therefore, accurate numerical modeling is

important to designing the next generation OPA signal seed. My approach uses a

hybrid coupling of the laser rate equations, in the two-level approximation, with
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the Generalized Nonlinear Schrodinger Equation (GNLSE) in order to capture, in

high fidelity, the physics of laser amplifiers plus waveguide effects like dispersion

and self phase modulation (SPM). It’s important to note that a method similar to

this has been proposed for modeling gain in Ytterbium doped fiber [44], where it

showed good agreement with experimental results. However, the method published

in [44] has not been studied in detail.

There have been various numerical models developed to simulate Fiber

Amplifiers (EDFA). They can be broadly categorized into models based on the

laser rate equations in the continuous wave (CW) limit [2, 51, 59]; solutions to the

Maxwell-Bloch equations in the limit of a limited pulse train of ultrafast pulses [28,

45, 48]; and the modified Nonlinear Schrodinger Equation (NLSE) with a complex

Lorentzian gain spectrum and a saturable absorber amplitude function. [39, 40,

58]. Each method has been developed and tailored to simulate the corner of the

operating envelope of EDFAs which best address the areas of active research at that

time. Consistent with this practice, this study seeks to contribute to a niche in the

modeling of EDFAs in an up and coming regime of operation. Specifically, high

rep rate (∼MHz) non-linear EDFAs, pumped at 980 nm and seeded with 1550 nm,

which are being used for many applications (in addition to seeding OPA’s) such as

spectroscopy [70] and generating octave spanning supercontinuum [78].

The model we adopt is the two-level rate equations in the steady state

approximation. The two-level approximation is valid in the limit that the pumping

rate Ωpump to the 3rd level (980 nm) is slower than the nonradiative decay rate

Ωdecay from levels 3 (980 nm)→ 2 (1550) nm). In this case no significant popu-
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Figure 5.2: (left) energy level diagram identifying the pumping rate Ωpump and
nonradiative decay rate Ωdecay from the 980 nm level to the 1530 nm level. (right)
plot of Ωpump/Ωdecay for the power ranges applicable to this analysis. Red dot
indicates the maximum pumping power. As this ratio approaches 1 the two-level
approximation becomes questionable. The energy levels arise from the Stark
splitting of the 4f shell in the Er3+ ion.

lation accumulates in level 3. Equation 5.1 gives the pumping rate as a function

of pump power Pp, pump absorption cross section σap, pump frequency νp, and

effective area Ae f f [27].

Ωpump =
Ppσap

hνpAe f f
(5.1)

For Er:doped fused silica fiber Ωdecay = 1/(7 µs) = 143 kHz [10]. In [27] it

was calculated that this limit is satisfied (for typical EDFA configurations) when

the average pumping power is < 1W . In figure 5.2 we justify this further by

plotting Ωpump/Ωdecay up to the maximum pumping power used in this analysis.

It’s potentially interesting to explore the validity of the 2 level approximation by
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way of careful comparison of simulation to experiment, since operational EDFA

pumping powers are typically around 1 W. The steady state approximation is

reasonable because the depletion of the excited state population fraction from a

single ultrafast pulse is insignificant, as reported by [15]. This implies the EDFA

responds to a time average of all the pulses.

Figure 5.3: Basic flow of the two iterative methods used to converge the coupled
differential equations. Method 1 involves propagating all 5 equations outward
(z = 0→ z = L) and inward (z = L→ z = 0) simultaneously, and averaging the
values at the endpoints with either the value from the previous iteration or a
boundary value when known. In method 2 only the equations co-propagating with
the signal are solved on the outward leg, and the equations counter-propagating
with the signal are solved on the inward leg.

Laser amplifier characteristics, such as pump depletion, gain saturation,

and amplified stimulated emission (ASE), were explored both numerically [2, 51]

and analytically [59] in the 1990’s. However, these studies focused on peak power

levels where non-linearity was not a factor. As a result, there was no need to merge

these elements of a laser amplifier model with fiber non-linearity. In this section we
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present an Erbium Doped Fiber Amplifier model designed for a MHz repetition rate,

picosecond-pulse duration, non-linear EDFA, which combines elements including

pump absorption, amplified stimulated emission, excited-state population depletion,

and gain saturation; along with fiber dispersion and non-linearity; and consideration

to multiple pumps which are co-propagating and counter propagating with the

signal. We also compare the results of our model to a simpler saturable absorber

gain model, and discuss their agreement.

The Erbium gain fiber parameters summarized in table 5.1 are for the Er80-

4/125-HD-PM gain fiber, and have been given to us by the manufacturer nLIGHT.

Where there is an asterisk, the a fiber parameter’s value is not well known, and we

used general parameters from literature or from correspondence with collaborators.

Additionally, we were provided with gain g(λ ) and absorption a(λ ) curves by the

fiber manufacturer, which we used in this simulation.

The spirit of the simulation is an embedded Split Step Fourier Method

(SSFM), which solves the NLSE, inside a 4th order Runge-Kutta (RK4) algorithm

that propagates the laser rate equations. At each step of the simulation, the RK4

method evolves the average power contained in each spectral bin, calculates the

excited state population fraction N, and informs the NLSE of the gain function

g(N) where gain is applied, and dispersion and nonlinear effects are modeled. The

steady state rate equations for the power spectrum of signal frequencies Ps(ν),

co-propagating and counter propagating pump P+
p (ν) and P−p (ν), and forward

propagating and backward propagating ASE P+
A (ν) and P−A (ν), are given in equa-

tions 5.2 - 5.4. These equations are modified from those given in [10] in order to
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Dispersion [ps/(nm*km)] -22
Dispersion slope [ps/(nm2 ∗ km)] 0.046
GVD (β2) [ps2/km] 28.06
TOD (β3) [ps3/km] 0.028
Non-linear parameter (γ) [1/(W*km)] 3.5*
Mode field diameter [µm] 6.5
Peak core absorption @ 1530 nm [dB/m] 80
Numerical aperture 0.2
Core Radius [µm] 1.4*
Radius of Erbium distribution [µm] 1.0*
Erbium doping concentration [m−3] 5.9×1025

Excited state lifetime τ [ms] 9.5
Intrinsic fiber loss α [1/m] 0.01*

Table 5.1: Er80-4/125-HD-PM fiber parameters, which were used in this
simulation, and obtained from the fiber manufacturer or estimated based on other
parameters.

utilize the gain g(ν) and absorption a(ν) curves obtained from the fiber manufac-

turer, instead of cross sections.

dP±p
dz

=±(a+g)NP±p ∓aP±p ∓αP±p (5.2)

dPs

dz
= (a+g)NPs−aPs−αsPs (5.3)

dP±A
dz

=± (a+g)NP±A ±gN2hν∆ν∓aP±A −∓αP±A (5.4)

Where N is the excited state population fraction, h is Planck’s constant, and α is

the intrinsic fiber loss parameter. The excited state population fraction N is be
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calculated using formula, 5.5

N =
∑ν

a
hνξ

Ps + ∑ν
a

hνξ
PA +∑ν

a
hνξ

Pp

∑ν
a+g
hνξ

Ps + ∑ν
a+g
hνξ

PA + ∑ν
a+g
hνξ

Pp +1
(5.5)

Where the total ASE power PA is the sum of the forward propagating and backward

propagating ASE (PA = P+
A +P−A ), and the total pump power is the sum of the

co-propagating and counter propagating pump [10]. The fiber saturation parameter

ξ is calculated according to the formula ξ = Esat ∗ frep(a+g)/(hν), where frep

is the repetition rate of the laser, and the saturation energy is estimated to be

Esat = 1 nJ for Erbium doped fiber.

Merging the rate equations with pulse dispersion and non-linearity is ac-

complished by embedding a SSFM routine within the RK4 loop. The SSFM is the

standard way of solving the GNLSE 5.6, which in this form is valid for few cycle

(∼ f s) pulse durations, and broad bandwidth, [3] where the time domain envelope

U(t,z) is assumed to be moving at the group velocity (t = t ′− vgz).

∂U
∂ z
− iβ2

2
∂ 2U
∂ t2 −

β3

6
∂ 3U
∂ t3 +

igGω

2
U =−iγ

[
1− i

ω0

∂

∂τ

]
(
(1− fR)U |U |2 +U

∫
∞

0
fRhR(t′)|U( τ− t′)|2dt′

) (5.6)

The operator ig
2Gω has been added to the NLSE to account for signal gain in the

amplifier. The coefficient g captures the z dependence of the gain and Gω is the
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complex Lorentzian gain envelope given by formula 5.7 [67],

Gω =
−ω

0.5∆ω

1

1+
(

ω

0.5∆ω

)2 +
i

1+
(

ω

0.5∆ω

)2 (5.7)

∆ω was calculated using a FWHM ∆λ = 35 nm (∆ω = 27 rad/ps), which was

determined by the gain spectrum bandwidth provided by the fiber manufacturer.

At the start of the simulation, the signal power Ps0 is initialized by renor-

malizing |Uω0|2 according to formula 5.8

Ps = Pave

(
|Uω |2

max(|Uω |2)

)
(5.8)

Where Pave is the average power in the beam. We also define a narrow bandwidth

pump, both forward and backward P±P0, centered around 980 nm, and initialize

P±A0 spectrum both to zero. Next the algorithm takes a step along the propagation

distance z and the RK4 routine propagates the average power in all the beams using

the rate equations. Then the gain parameter g is calculated according to formula

5.9

g = (aνs +gνs)N−aνs−αs (5.9)

Where the absorption and emission coefficients a and g are evaluated at the central

signal frequency νs = 193 T Hz. This means that the gain spectrum is determined

by the Lorentzian model, but the gain amplitude is scaled by g which is a function

of the excited state population fraction N. Finally, the algorithm completes the
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steps of the SSFM. At the end of the SSFM, the power in the signal Ps is calculated

from Uω again using 5.8 and this is fed back to the RK4 solver. One step of the

algorithm is summarized in equation 5.10

N← Propagate the Rate Equations(Ps,P±p ,P±A )

g = (aωs +gωs)N−aωs−αs

Uω =Uω exp((−1/2iβ2ω
2−1/6βω

3− i
g
2

Gω)dz/2)

Ut = IDFT{Uω}

Ut =Ut exp(NL∗dz)

Uω = DFT{Ut}

Uω =Uω exp((−1/2iβ2ω.2−1/6β3ω
3− i

g
2

Gω)dz/2)

Ut = IDFT{Uω}

Ps = Pave

(
|Uω |2

max(|Uω |2)

)

(5.10)

Where NL is the nonlinear operator given by the right hand side of equation 5.6,

and Pave is the average power in the beam.

Since this problem is an initial value problem for 5 parameters, but only

the initial values of the signal Ps, co-propagating pump P+
p , and forward ASE P+

A

are known at the start of the grid, it is necessary to iterate the solver, using the

result from the outward solution (z = 0→ z = L) as the initial values for the inward

solution (z = L→ z = 0) and until the simulation converges. The simulation does

this in two different ways depending on the forward and backward propagating

pump powers. For high backward pump powers and low forward pump powers the
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best method to ensure convergence is to propagate all 5 differential equations for

pump, ASE, and signal simultaneously, and average the values at the end points. A

depiction of this is titled "Method 1" in figure 5.3. For both low backwards and

forwards pump powers, and any forward pump power greater than 0.3 W, the best

method is to solve the co-propagating beams only on the outward solution and the

counter-propagating beams on the inward solution, while using the results from the

previous solution to calculate N. This is "Method 2" in figure 5.3 Both strategies

allow the solution to relax to a self consistent one in less than 48 iterations in

their respective domains of applicability. To monitor convergence the algorithm

calculates the sum of the squared difference between the excited state fraction N

curves for the outward and inward solutions, and I have chosen to accept values

< 0.001 as criteria for successful convergence.

This model was compared to a saturable absorber gain profile, which is an

approximate model for the behavior of a system where amplification is reduced at

high optical intensities, e.g. a laser amplifier were absorption of the pump light

simultaneously causes, and is dependent on, the depletion of doping ions in the

ground state. This model is given by equation 5.11, where g0 is a free parameter

which must be set by the user so that the simulation matches the experimentally

measured power output of the amplifier, Pave is the average power, and Psat is the

saturation power. The clear shortcoming of this model is that the user must have

prior knowledge of the power output of the amplifier in order to manually adjust
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g0.

g =
g0

1+ Pave
Psat

(5.11)

The input time domain electric field for this simulation was obtained by

measuring the actual spectrum from our 60.5 MHz frequency comb, manufactured

by Menlo Systems. A home built SHG FROG (Frequency Resolved Optical Gating)

was used to reconstruct E(t) and determine the spectral phase. Because a Second

Harmonic Generation (SHG) FROG trace can only give the magnitude of the chirp

and not the sign, the pulse was determined to be anomalously chirped (Group

Velocity Dispersion (GVD) < 0) by noting that it broadens monotonically when

propagating down anomalously dispersive (PM 1550) fiber. This spectral phase

was applied to a super Gaussian spectrum with 10 nm of bandwidth, and an average

power of 1 mW , and is the input to the simulation.

The Matlab code for the simulation which utilizes the saturable absorber

gain model is included in the appendix. The code uses essentially the same split-

step algorithm as in 5.10 except the steps are embedded in a 4th order Runge-Kutta

method, with an embedded 3rd order for local error estimation and control. This

adaptive ERK3(4) method automatically adjusts the step size to compensate for

the local strength of the nonlinear operator and is described in [8]. The full code

which solves the coupled rate equation and GNLSE model is significantly more

complicated, and too long to put in the appendix.

The results of running this simulation are compared to the saturable ab-
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Figure 5.4: Side by side comparison of the saturable absorber gain model (left)
vs. this simulation model (right) in the following fields (top to bottom) final pulse
spectrum, spectrum vs. propagation length z, frequency vs. time spectrogram,
and average power buildup vs. z. This comparison was made in the maximum
power pumping configuration of 1 forward (540 mW) and 2 backward pumps (1080
mW total).

sorber model in figure 5.4 for a max power pumping configuration of 1 co-

propagating (forward), 540 mW pump, and 2, 1080 mW, counter-propagating

(backward) pumps. The coupling efficiency between the pump and the gain fiber

was estimated to be 0.9, and all the power levels reported consider the coupling

loss. These parameters resulted in simulation output powers of 234 mW, which

in our experience is typical for these amplifiers. Our EDFA model has the ability

to predict the final power output of the amplifier from fiber properties, and input
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Figure 5.5: Same as figure 5.4 except 1 forward (540 mW) pump only was used
in this simulation. Once again our model predicts a stronger built up earlier in the
amplifier, which enhances the nonlinear effects in the gain fiber.

pulse parameters. However, in the case of the saturable absorber model the gain

factor g0 is arbitrary and must be manually adjusted. This was done by running

our simulation first, noting the 234 mW output power, and then tuning g0 to match

that final power so that the models can be compared on an level plane.

Figure 5.4 shows a side by side comparison of the saturated absorber gain

model (left) and the model developed in this study (right) in the 1 forward (540

mW) and 2 backward (1080 mW total) pumping configurations. The most notable
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difference between the two models is the gain profile (i.e. power vs. z). Our model

shows a significant buildup of power early in the amplifier (lower right plot in

figure 5.4) while the saturable absorber gain model builds up the majority of the

power in the second half of the amplifier. Consequently, nonlinear effects begin to

dominate sooner in our model, which in turn generates a broader spectrum by the

end of the amplifier. Figure 5.5 shows the same side by side comparison as 5.4,

except in this case 1 forward (540 mW) pump was simulated. Here the asymmetric

pumping configuration causes the gain to completely saturate down the EDFA,

and there is some re-absorption of the 1550 nm signal light. This is caused by a

depletion in the excited state population. This effect is clearly not captured in the

saturable absorber model which will always show the same gain profile regardless

of pumping configurations. In summary, the models tend to be more consistent

when the EDFA is pumped with 1 forward and 2 backward pumps, but disagree

when pumped with 1 forward pump.

From the time-frequency spectrogram (3rd row of figures 5.4 and 5.5) we

observe that the lower frequency components (i.e. "red light") emerges sooner from

the amplifier than the higher frequency ("blue") components. Meaning the starting

anomalously chirped pulse has passed through the point of maximum temporal

compression inside the amplifier and emerges normally chirped. This fact is critical

for compressing the pulse in the next stage of the amplifier, which propagates the

signal down a length of anomalous PM 1550 fiber. It’s easy to adapt the code

included at the end of this thesis to do that element of the simulation.

An important factor to consider when solving differential equations is
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Figure 5.6: Stability landscape as a function of forward and backward pump
power. Regions of blue and turquoise show where the algorithm has converged
while the orange and red regions indicate lack of convergence.

convergence, especially in this case where it takes many forward and backward

iterations of the solver to converge to a self consistent solution. For the set of

parameters chosen, the simulation converges within 48 iterations over nearly the

entire domain of forward and backward pump powers. This is shown in figure

5.6, which was generated by comparing the excited state population fraction N

of the final outward and inward propagation solutions. Specifically, the z scale

is calculate according to the formula log10[∑(Noutward(z)−Ninward(z))2], and the

blue and turquoise regions represent areas where this value differs by <= 0.1%

indicating convergence. The simulation is unstable at high backward pump powers

with zero forward pump. For all the results shown in this section the algorithm
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converged successfully.

In this section we described a hybrid method of simulating a 60.5 MHz,

1550 nm, pulse propagation down an Erbium doped fiber pumped at 980 nm, which

uses a SSFM to solve the NLSE embedded in a RK4 algorithm to propagate the

laser rate equations. This coupling allows for uncompromising capture of both

fundamental laser physics like gain saturation and pump depletion along with fiber

dispersion and nonlinear effects. The results of this simulation were compared to

a simpler saturable absorber gain model, and it was shown that the two models

disagree with regard to the nature of the power buildup in the amplifier as well as

the final frequency domain spectrum. At this time we do not have experimental

results to directly compare to the models, but this would be a natural next step in

designing the next generation EDFA for the OPA. With the ultrafast optics world

employing more non linear EDFAs in creative ways, high fidelity modeling will be

important in the future.
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6. Toward Isolated Attosecond Pulse

(IAP) Generation

This thesis described the construction of a high power MIR frequency comb

which generates 3 µm, 100 fs pulses, with 6.7 W of average power, and 14.9 W

of 1.55 µm light. Also reported is an experiment to generate high harmonics

in PPLN waveguides, performed using our frequency comb, and accompanying

analysis which has shown consistency between our experiment, and an experiment

performed at NIST [30], with a simulation that models cascaded χ(2) processes.

Thus proposing an answer to a question originally asked in their groundbreaking

work—"By what mechanism is the light generated [in PPLN Waveguides]?"—

cascaded χ(2) processes.

Although, the PPLN waveguide experiment made a meaningful contribution

to the science of high harmonic generation (HHG) in solids, it was not the primary

scientific objective of our laser system. Therefore, I would like to return to the

original path by discussing three questions. Where are we now? Where do we

want to go and why? And, how are we going to get there?
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Beginning with where do we want to go? The ultimate objective of this

laser systems is to generate phase stable isolated attosecond pulses (IAP) at high

repetition rates (∼MHz), which are a probe for studying light-matter interaction

on attosecond time scales. As a point of reference, it takes an electron in the 1s

orbital of the hydrogen atom ∼ 152 as to orbit the nucleus [17]. The realization

of the dream to develop a usable, "turn key", IAP frequency comb would be a

major step toward enabling further apparatus. Such as, attosecond time resolved

(real space) photo emission microscopy (atto-PEEM), which was first proposed

in 2007 and still yet to be realized due to light source limitations (principally the

lack of high repetition rate sources) [69]. In addition to being foreseeably rich

in fundamental science, exploring light matter interaction on the attosecond time

scale has practical applications like raising the efficiency of solar cells through

better understanding the photocatalytic process [13].

One possible road to IAPs begins with making high harmonics in crystals

like Zinc Oxide (ZnO) [26], or Zinc Selenide (ZnSe) [41]. In the experiment to

generate high harmonics in PPLN waveguides, we observed bellow band gap har-

monics only, and showed that the harmonic generating mechanism is perturbative,

cascaded χ(2). The next focus of this project will be on making non-perturbative

above band gap harmonics. At laser induced electric fields on the order of the band

gap of the material, thinking of the nonlinear polarization as a small perturbation

to the crystal (equation 1.8) is no longer valid. Figure 6.1 illustrates two pathways

in momentum space, intra-band and inter-band currents, which can generate high

harmonics in solids. In the presence of a strong laser field an electron tunnels to
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the conduction band where it can either oscillate (intra-band current) and radiate,

or recombine with a hole in the valence band (inter-band current) and radiate.

Figure 6.1: Concept drawing depicting 2 generation process for above band gap
harmonics, taken from [25]. The electron promoted to the conduction band can
oscillate within the conduction band and radiate. This is known as intra-band
current. Or the electron can re-combine with the hole in the valance band, or
another hole in a nearby lattice site, and radiate. This is known as inter-band
current.

There are established methods to model non-perturbative SS-HHG, such as solving

the semiconductor Bloch equations, or methods based on time-dependent density-

functional theory (TDDFT) [77]. And there are available DFT software packages

like "Octopus" which have been recently used by the Max Planck Institute to model

SS-HHG [35]. The mathematical treatment and accompanying simulation of this

physics is a next possible step in this project.

However, one benchmark we could compare to right now is an intensity of

1 TW/cm2, which recent experiments have shown to be the order of magnitude
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needed for MIR drivers to generate non-perturbative above bang gap harmonics in

materials like Zn0 and ZnSe [26], [41]. Currently, our OPA generates pulses which

are 100 fs, 5 W average power, have a qualitatively good spatial mode (as viewed

on a camera), and autocorrelations suggest are relatively unchirped. In the part 3

of this thesis I presented a model for and Erbium Doped Fiber Amplifier (EFDA),

and have included simulation code in the appendix which can model the rest of the

elements of the design for the phase 2 OPA signal seed branch. If phase 2 signal can

seed the OPA with broadband temporally compressed pulses, then our calculations

show that approximately 400 nm of idler bandwidth can be generated, which

corresponds to about 40 fs transform limited pulse duration. Simulations, indicate

that the pulse will be normally chirped and can be compressed to this transform

limit in a prism pair compressor. This would yield a 4 optical cycle, 3 µm, pulse

with a peak power of 2 MW , and if focused down to a 100 µm2 spot size (∼ 3λ

waist, which clean spatial mode suggests is straightforward 1) this would achieve an

intensity of 2 TW/cm2 And this is consistent with the aforementioned 1 TW/cm2

need to generate above band gap high harmonics in materials commonly used for

this purpose.

So for arguments sake, lets say the OPA is capable of generating harmonics

above the band gap in ZnO up to harmonic number 18. In order to motivate how

harmonics up to N=18 (160 nm) wavelength could generate and attosecond pulse

train, consider the toy model shown in figure 6.2. To generate this plot cosine

waves with frequency n∗ω0 (where n is an integer) were added together in phase

1Also, in order to couple into the PPLN waveguide we already achieved spot sizes of this order
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Figure 6.2: Simple model demonstrating how the coherent superposition of 18
harmonics of a 100 THz fundamental can yield attosecond pulse durations. The
more harmonics that are added the shorter duration the attosecond burst
becomes.

and this results in a pulse train of 300 as bursts. However, it is important to note

that for intra-band currents the attosecond burst is generated every 1/2 cycle of

the optical field, which are the turning points of the electron oscillating in the

conduction band (figure 6.1). Fortunately, the OPA will be capable of producing 4

cycle driving fields, but the problem still remains of isolating 1 attosecond pulse

from the 8 necessary to generate an attosecond burst which could occur at ever 1/2

cycle 2

There are a few methods which have been developed to isolate a single

attosecond pulse from the pulse train [16]. And the one which I’ve chosen to

explain is two color polarization gating. As previously mentioned, intra-band

2This is an oversimplification which doesn’t consider that not every cycle of the electric field
under the envelope will have the strength ∼ 0.5 V/A, which is the order of magnitude needed to
produce high harmonics.
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Figure 6.3: Conceptual illustration of two color gating method. Electric fields at
frequencies ω and 2ω (top) are mixed in order to break the symmetry of the
driving field, which causes the attosecond burst to be generated on every 1 cycle
of the field instead of every 1/2 cycle.

currents generate attosecond pulses which occur at every 1/2 cycle of the driving

field. Therefore, any method chosen to isolate a single attosecond pulse would

need a "pass gate" which is no longer than 5 fs (1/2 cycle). However, by mixing ω

and 2ω (in our case that’s the 100 THz idler and 200 THz signal) the symmetry

of the HHG drive field can be broken, and this is shown in figure 6.3. In this

case, the attosecond burst will be generated every 1 cycle which relaxes the gating

requirement to 10 fs. Using the two color mixing scheme makes the attosecond

pulses easier to gate, but the two color scheme is not itself a gating method.

In order to isolate 1 attosecond pulse, a polarization gate could be employed.

Figure 6.4 shows how a polarization gate can be construed by using a superposition

of left and right hand circularly polarized light as the driving field for the harmonic

generation process. When the pulses with opposite polarization are mixed there is



CHAPTER 6. TOWARD ISOLATED ATTOSECOND PULSE (IAP) GENERATION 120

Figure 6.4: Polarization gating method where the HHG driving field is a
superposition of right and left circularly polarized light with time delay τ. The
resulting time dependent ellipticity drops sharply to 0 in a small window of time,
and this constitutes the "gate" in which attosecond pulses can be made. This
figure is from [66]

a sub-cycle time frame when the polarization of their superposition is linear, and

this corresponds to the gate being open. The attosecond bursts generated at other

times are suppressed by the ellipticity of the driving field. The paper this figure

was taken from [66], was an experiment in attosecond pulse generation from gas

phase HHG, but solid state HHG has shown similar dependence on ellipticity [76].

So, once again, let’s say for arguments sake that the optics engineering

challenges I have described above have been overcome, then the question becomes—

how do we measure the duration of an isolated attosecond pulse? The first logical

step might be to investigate whether the harmonic emission is confined to less

than an optical cycle (i.e. < 10 fs). Although challenging, this measurement is
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still within the realm of traditional ultrafast measurement techniques—such as

cross correlation FROG (XFROG) which utilizes DFG in an ultra-thin (5 µm)

BBO crystal—which has demonstrated the capability to measure 3 fs pulses [12].

Measuring absolute pulse durations less than a few fs is a tour de force experi-

ment in its own right. One method which has been implemented in experiments

that generate attosecond pulses via gas-phase HHG is the FROG-CRAB method

(Frequency Resolved Optical Gating for Complete Reconstruction of Attosecond

Bursts) [47]. In this method the attosecond burst is used to generate photoelectrons

which are born into the presence of an additional MIR field which can be controlled

with a variable delay τ . Recording the spectrogram of photoelectron energy vs. τ

encodes the duration of the attosecond pulse. However, the FROG-CRAB method

is based on gas-phase photoelectron spectroscopy, and the gas-phase nature is

critical to assumptions in the reconstruction algorithm [17]. Surface photoemission

experiments have been measuring electron dynamics on the attosecond time scales

using attosecond streaking (fundamentally similar to FROG-CRAB), but the re-

construction requires the XUV pulse duration be measured in a separate gas-phase

experiment [55, 57]. In principle, surface photoemission experiments can be used

to directly characterize the duration of the attosecond pulses, perhaps using the

knowledge of surface electron dynamics gained from these experiments.
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A. GNLSE Solver

This example code solves the Generalized Nonlinear Schrodinger Equation
(GNLSE) for pulse propagation down optical fibers, and includes the effects of
Kerr nonlinearity and Ramam Scattering [3]. The ERK3(4) algorithm [8] is an
adaptive step size method which controls the local error to less than a specified
tolerance [61] .
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